Update Content - 2020-09-23
This commit is contained in:
@@ -13,13 +13,16 @@ Tags
|
||||
|
||||
Resources:
|
||||
|
||||
- ([Skogestad and Postlethwaite 2007](#orgf3c8b69))
|
||||
- ([Toivonen 2002](#orgb2755d2))
|
||||
- ([Zhang 2011](#org3e1b2ef))
|
||||
- ([Skogestad and Postlethwaite 2007](#org352385f))
|
||||
- ([Toivonen 2002](#orga84ee63))
|
||||
- ([Zhang 2011](#org74fd92c))
|
||||
|
||||
|
||||
## Definition {#definition}
|
||||
|
||||
<div class="bblue">
|
||||
<div></div>
|
||||
|
||||
A norm of \\(e\\) (which may be a vector, matrix, signal of system) is a real number, denoted \\(\\|e\\|\\), that satisfies the following properties:
|
||||
|
||||
1. Non-negative: \\(\\|e\\| \ge 0\\)
|
||||
@@ -27,6 +30,8 @@ A norm of \\(e\\) (which may be a vector, matrix, signal of system) is a real nu
|
||||
3. Homogeneous: \\(\\|\alpha \cdot e\\| = |\alpha| \cdot \\|e\\|\\) for all complex scalars \\(\alpha\\)
|
||||
4. Triangle inequality: \\(\\|e\_1 + e\_2\\| \le \\|e\_1\\| + \\|e\_2\\|\\)
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
## Vector Norms {#vector-norms}
|
||||
|
||||
@@ -42,7 +47,7 @@ A norm of \\(e\\) (which may be a vector, matrix, signal of system) is a real nu
|
||||
|
||||
## Matrix Norms {#matrix-norms}
|
||||
|
||||
<div class="examp">
|
||||
<div class="bgreen">
|
||||
<div></div>
|
||||
|
||||
A norm on a matrix \\(\\|A\\|\\) is a matrix norm if, in addition to the four norm properties, it also satisfies the multiplicative property:
|
||||
@@ -96,37 +101,94 @@ We normally use the same p-norm both for the vector and the signal.
|
||||
|
||||
## Signal Interpretation of Various System Norms {#signal-interpretation-of-various-system-norms}
|
||||
|
||||
Consider a system \\(G\\) with input \\(d\\) and output \\(e\\), such that:
|
||||
\\[ e = G d \\]
|
||||
|
||||
For performance, we may want the output signal \\(e\\) to be "small" for any allowed input signals \\(d\\).
|
||||
We therefore need to specify:
|
||||
|
||||
1. What \\(d\\) are allowed. (Which set does \\(d\\) belong to?)
|
||||
Some possible inputs signal sets are:
|
||||
- \\(d(t)\\) consists of impulses \\(\delta(t)\\).
|
||||
- These generate step changes in the states.
|
||||
- \\(d(t) = \sin(\omega t)\\) with fixed frequency
|
||||
- \\(d(t)\\) is bounded in energy \\(\\|d(t)\\|\_2 \le 1\\)
|
||||
- \\(d(t)\\) is bounded in power \\(\\|d(t)\\|\_\text{pow} \le 1\\)
|
||||
- \\(d(t)\\) is bounded in magnitude \\(\\|d(t)\\|\_\infty \le 1\\)
|
||||
2. What we mean by "small". (Which norm should be use for \\(e\\)?)
|
||||
To measure the output signal, we may consider the following norms:
|
||||
- 2-norm (energy): \\(\\|e(t)\\|\_2\\)
|
||||
- \\(\infty\text{-norm}\\) (peak magnitude): \\(\\|e(t)\\|\_\infty\\)
|
||||
- Power: \\(\\|e(t)\\|\_\text{pow}\\)
|
||||
|
||||
We now consider which system norms result from the definition of input classes and output norms (Table [1](#table--tab:system-norms)).
|
||||
|
||||
<a id="table--tab:system-norms"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:system-norms">Table 1</a></span>:
|
||||
System norms for sets of inputs signals and three different output norms
|
||||
</div>
|
||||
|
||||
| | \\(\delta(t)\\) | \\(\sin(\omega t)\\) | \\(\vert\vert d \vert\vert\_2\\) | \\(\vert\vert d \vert\vert\_\infty\\) | \\(\vert\vert d \vert\vert\_\text{pow}\\) |
|
||||
|-------------------------------------------|------------------------------------------|--------------------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------|
|
||||
| \\(\vert\vert e \vert\vert\_2\\) | \\(\vert\vert G(s) \vert\vert\_2\\) | \\(\infty\\) | \\(\vert\vert G(s) \vert\vert\_\infty\\) | \\(\infty\\) | \\(\infty\\) |
|
||||
| \\(\vert\vert e \vert\vert\_\infty\\) | \\(\vert\vert g(t) \vert\vert\_\infty\\) | \\(\overline{\sigma}(G(j\omega))\\) | \\(\vert\vert G(s) \vert\vert\_2\\) | \\(\vert\vert g(t) \vert\vert\_1\\) | \\(\infty\\) |
|
||||
| \\(\vert\vert e \vert\vert\_\text{pow}\\) | 0 | \\(\frac{1}{\sqrt{2}} \overline{\sigma}(G(j\omega))\\) | 0 | \\(\le \vert\vert G(s) \vert\vert\_\infty\\) | \\(\vert\vert G(s) \vert\vert\_\infty\\) |
|
||||
|
||||
|
||||
## System Norms {#system-norms}
|
||||
|
||||
|
||||
### \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
|
||||
|
||||
SISO Systems => absolute value => bode plot
|
||||
MIMO Systems => singular value
|
||||
Signal => maximum value
|
||||
<div class="bgreen">
|
||||
<div></div>
|
||||
|
||||
Consider a proper linear stable system \\(G(s)\\).
|
||||
The \\(\mathcal{H}\_\infty\\) norm is the peak value of its maximum singular value:
|
||||
\\[ \\|G(s)\\|\_\infty \triangleq \max\_{\omega} \overline{\sigma}(G(j\omega)) \\]
|
||||
|
||||
</div>
|
||||
|
||||
In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as follows:
|
||||
|
||||
- it is the worst case steady-state gain for sinusoidal inputs at any frequency
|
||||
- it is equal to the 2-norm in the time domain:
|
||||
\\[ \\|G(s)\\|\_\infty = \max\_{d(t)} \frac{\\|e(t)\\|\_2 \neq 0}{\\|d(t)\\|\_2} = \max\_{\\|d(t)\\|\_2 = 1} \\|e(t)\\|\_2 \\]
|
||||
|
||||
|
||||
### \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm}
|
||||
|
||||
<div class="bgreen">
|
||||
<div></div>
|
||||
|
||||
Consider a strictly proper system \\(G(s)\\).
|
||||
The \\(\mathcal{H}\_2\\) norm is:
|
||||
|
||||
\begin{align\*}
|
||||
\\|G(s)\\|\_2 &\triangleq \sqrt{\frac{1}{2\pi} \int\_{-\infty}^{\infty} \text{tr}\left(G(j\omega)^HG(j\omega)\right) d\omega} \\\\\\
|
||||
&= \sqrt{\frac{1}{2\pi} \int\_{-\infty}^{\infty} \sum\_i {\sigma\_i}^2(G(j\omega)) d\omega}
|
||||
\end{align\*}
|
||||
|
||||
</div>
|
||||
|
||||
In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as follows:
|
||||
|
||||
- it is a measure of the expected RMS value of the output to white noise excitation
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
|
||||
As explained in ([Monkhorst 2004](#orgd47c42b)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in ([Monkhorst 2004](#org50a92a2)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
Minimizing the \\(\mathcal{H}\_2\\) norm can be equivalent as minimizing the RMS value of some signals in the system.
|
||||
|
||||
|
||||
## Link between signal and system norms {#link-between-signal-and-system-norms}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgd47c42b"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="org50a92a2"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="orgf3c8b69"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="org352385f"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="orgb2755d2"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
<a id="orga84ee63"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
<a id="org3e1b2ef"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
<a id="org74fd92c"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
|
Reference in New Issue
Block a user