Update Content - 2022-10-27
This commit is contained in:
parent
ec5e745a54
commit
f3d3af45d1
@ -7,9 +7,10 @@ draft = false
|
||||
Tags
|
||||
: [Complementary Filters]({{< relref "complementary_filters.md" >}})
|
||||
|
||||
(<a href="#citeproc_bib_item_2">Beijen et al. 2019</a>)
|
||||
Mention in the literature:
|
||||
|
||||
(<a href="#citeproc_bib_item_1">Beijen 2018</a>) (section 6.3.1)
|
||||
- (<a href="#citeproc_bib_item_2">Beijen et al. 2019</a>)
|
||||
- (<a href="#citeproc_bib_item_1">Beijen 2018</a>) (section 6.3.1)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
@ -24,7 +24,7 @@ For short stroke and very high dynamic applications, mainly two types of actuato
|
||||
|
||||
Rotational drives can be combined with ball-screw mechanisms for long (infinite) axial motion:
|
||||
|
||||
- Brush-less DC Motor. See (<a href="#citeproc_bib_item_2">Yedamale 2003</a>) and this [working principle](https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html).
|
||||
- Brush-less DC Motor. See (<a href="#citeproc_bib_item_3">Yedamale 2003</a>) and this [working principle](https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html).
|
||||
- [Stepper Motor]({{< relref "stepper_motor.md" >}})
|
||||
|
||||
|
||||
@ -33,11 +33,13 @@ Rotational drives can be combined with ball-screw mechanisms for long (infinite)
|
||||
For vibration isolation:
|
||||
|
||||
- In (<a href="#citeproc_bib_item_1">Ito and Schitter 2016</a>), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat.md" >}}))
|
||||
- (<a href="#citeproc_bib_item_2">Murugesan 1981</a>) On overview of electric motors for space applications
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>Ieee/Asme Transactions on Mechatronics</i> 21 (2): 1169–78. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (Bldc) Motor Fundamentals.” <i>Microchip Technology Inc</i> 20: 3–15.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Murugesan, S. 1981. “An Overview of Electric Motors for Space Applications.” <i>Ieee Transactions on Industrial Electronics and Control Instrumentation</i> IECI-28 (4): 260–65. doi:<a href="https://doi.org/10.1109/TIECI.1981.351050">10.1109/TIECI.1981.351050</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (Bldc) Motor Fundamentals.” <i>Microchip Technology Inc</i> 20: 3–15.</div>
|
||||
</div>
|
||||
|
@ -1,8 +1,22 @@
|
||||
+++
|
||||
title = "Digital Signal Processing"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## References {#references}
|
||||
|
||||
Books:
|
||||
|
||||
- (<a href="#citeproc_bib_item_1">Lyons 2011</a>)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Lyons, Richard. 2011. <i>Understanding Digital Signal Processing</i>. Upper Saddle River, NJ: Prentice Hall.</div>
|
||||
</div>
|
||||
|
@ -35,6 +35,9 @@ There are several methods to go from the analog to the digital domain, `Tustin`
|
||||
|
||||
## Obtaining analytical formula of filter {#obtaining-analytical-formula-of-filter}
|
||||
|
||||
|
||||
### Procedure {#procedure}
|
||||
|
||||
The Matlab [Symbolic Toolbox](https://fr.mathworks.com/help/symbolic/) can be used to obtain analytical formula for discrete transfer functions.
|
||||
|
||||
Let's consider a notch filter:
|
||||
@ -56,13 +59,6 @@ First the symbolic variables are declared (`Ts` is the sampling time, `s` the La
|
||||
syms gc wn xi Ts s z
|
||||
```
|
||||
|
||||
The symbolic formula of the notch filter is defined:
|
||||
|
||||
```matlab
|
||||
%% Notch Filter - Symbolic representation
|
||||
Ga = (s^2 + 2*xi*gc*s*wn + wn^2)/(s^2 + 2*xi*s*wn + wn^2);
|
||||
```
|
||||
|
||||
Then the bi-linear transformation is performed to go from continuous to discrete:
|
||||
|
||||
```matlab
|
||||
@ -70,6 +66,13 @@ Then the bi-linear transformation is performed to go from continuous to discrete
|
||||
s = 2/Ts*(z - 1)/(z + 1);
|
||||
```
|
||||
|
||||
The symbolic formula of the notch filter is defined:
|
||||
|
||||
```matlab
|
||||
%% Notch Filter - Symbolic representation
|
||||
Ga = (s^2 + 2*xi*gc*s*wn + wn^2)/(s^2 + 2*xi*s*wn + wn^2);
|
||||
```
|
||||
|
||||
Finally, the numerator and denominator coefficients can be extracted:
|
||||
|
||||
```matlab
|
||||
@ -90,6 +93,126 @@ den = (Ts^2*wn^2 - 4*Ts*wn*xi + 4) + (2*Ts^2*wn^2 - 8) * z + (Ts^2*wn^2 + 4*Ts*w
|
||||
```
|
||||
|
||||
|
||||
### Second Order Low Pass Filter {#second-order-low-pass-filter}
|
||||
|
||||
Let's consider a second order low pass filter:
|
||||
|
||||
\begin{equation}
|
||||
G(s) = \frac{1}{1 + 2 \xi \frac{s}{\omega\_n} + \frac{s^2}{\omega\_n^2}}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(\omega\_n\\): Cut off frequency
|
||||
- \\(\xi\\): damping ratio
|
||||
|
||||
First the symbolic variables are declared (`Ts` is the sampling time, `s` the Laplace variable and `z` the "z-transform" variable).
|
||||
|
||||
```matlab
|
||||
%% Declaration of the symbolic variables
|
||||
syms wn xi Ts s z
|
||||
```
|
||||
|
||||
Then the bi-linear transformation is performed to go from continuous to discrete:
|
||||
|
||||
```matlab
|
||||
%% Bilinear Transform
|
||||
s = 2/Ts*(z - 1)/(z + 1);
|
||||
```
|
||||
|
||||
The symbolic formula of the notch filter is defined:
|
||||
|
||||
```matlab
|
||||
%% Second Order Low Pass Filter - Symbolic representation
|
||||
Ga = 1/(1 + 2*xi*s/wn + s^2/wn^2);
|
||||
```
|
||||
|
||||
Finally, the numerator and denominator coefficients can be extracted:
|
||||
|
||||
```matlab
|
||||
%% Get numerator and denominator
|
||||
[N,D] = numden(Ga);
|
||||
|
||||
%% Extract coefficients (from z^0 to z^n)
|
||||
num = coeffs(N, z);
|
||||
den = coeffs(D, z);
|
||||
```
|
||||
|
||||
```text
|
||||
gain = 1/(Ts^2*wn^2 + 4*Ts*wn*xi + 4)
|
||||
```
|
||||
|
||||
```text
|
||||
num = (Ts^2*wn^2) + (2*Ts^2*wn^2) * z^-1 + (Ts^2*wn^2) * z^-2
|
||||
```
|
||||
|
||||
```text
|
||||
den = 1 + (2*Ts^2*wn^2 - 8) * z^-1 + (Ts^2*wn^2 - 4*Ts*wn*xi + 4) * z^-2
|
||||
```
|
||||
|
||||
And the transfer function is equal to `gain * num/den`.
|
||||
|
||||
|
||||
### Second Order High Pass Filter {#second-order-high-pass-filter}
|
||||
|
||||
Let's consider a second order low pass filter:
|
||||
|
||||
\begin{equation}
|
||||
G(s) = \frac{1}{1 + 2 \xi \frac{s}{\omega\_n} + \frac{s^2}{\omega\_n^2}}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(\omega\_n\\): Cut off frequency
|
||||
- \\(\xi\\): damping ratio
|
||||
|
||||
First the symbolic variables are declared (`Ts` is the sampling time, `s` the Laplace variable and `z` the "z-transform" variable).
|
||||
|
||||
```matlab
|
||||
%% Declaration of the symbolic variables
|
||||
syms wn xi Ts s z
|
||||
```
|
||||
|
||||
Then the bi-linear transformation is performed to go from continuous to discrete:
|
||||
|
||||
```matlab
|
||||
%% Bilinear Transform
|
||||
s = 2/Ts*(z - 1)/(z + 1);
|
||||
```
|
||||
|
||||
The symbolic formula of the notch filter is defined:
|
||||
|
||||
```matlab
|
||||
%% Second Order Low Pass Filter - Symbolic representation
|
||||
Ga = (s^2/wn^2)/(1 + 2*xi*s/wn + s^2/wn^2);
|
||||
```
|
||||
|
||||
Finally, the numerator and denominator coefficients can be extracted:
|
||||
|
||||
```matlab
|
||||
%% Get numerator and denominator
|
||||
[N,D] = numden(Ga);
|
||||
|
||||
%% Extract coefficients (from z^0 to z^n)
|
||||
num = coeffs(N, z);
|
||||
den = coeffs(D, z);
|
||||
```
|
||||
|
||||
```text
|
||||
gain = 1/(Ts^2*wn^2 + 4*Ts*wn*xi + 4)
|
||||
```
|
||||
|
||||
```text
|
||||
num = (4) + (-8) * z^-1 + (4) * z^-2
|
||||
```
|
||||
|
||||
```text
|
||||
den = 1 + (2*Ts^2*wn^2 - 8) * z^-1 + (Ts^2*wn^2 - 4*Ts*wn*xi + 4) * z^-2
|
||||
```
|
||||
|
||||
And the transfer function is equal to `gain * num/den`.
|
||||
|
||||
|
||||
## Variable Discrete Filter {#variable-discrete-filter}
|
||||
|
||||
Once the analytical formula of a discrete transfer function is obtained, it is possible to vary some parameters in real time.
|
||||
|
@ -24,7 +24,7 @@ Presentations:
|
||||
- (<a href="#citeproc_bib_item_4">Henein 2010</a>)
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
## Flexure Joints for Stewart Platforms {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From (<a href="#citeproc_bib_item_1">Chen and McInroy 2000</a>):
|
||||
|
||||
@ -32,14 +32,20 @@ From (<a href="#citeproc_bib_item_1">Chen and McInroy 2000</a>):
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
|
||||
|
||||
<https://www.youtube.com/watch?v=tenxq7N5q3k>
|
||||
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
Typical materials used for flexible joints are:
|
||||
|
||||
- Steel
|
||||
- Aluminum
|
||||
- Titanium
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
## References
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Cosandier, Florent. 2017. <i>Flexure Mechanism Design</i>. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.</div>
|
||||
|
@ -21,6 +21,8 @@ Tags
|
||||
| [Sios](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
|
||||
| [Keysight](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
|
||||
| [Optics11](https://optics11.com/) | Netherlands |
|
||||
| [Prodrive](https://prodrive-technologies.com/motion/products/interferometer/) | Netherlands |
|
||||
| [Agito](https://agito-akribis.com/voice-coil-motors/) | |
|
||||
|
||||
|
||||
## Reviews {#reviews}
|
||||
@ -34,7 +36,7 @@ The measured distance is proportional to the refractive index of the air that de
|
||||
|
||||
<a id="table--tab:index-air"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:index-air">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:index-air">Table 1</a>:</span>
|
||||
Dependence of Refractive Index \(n\) of Air from Temperature \(T\), pressure \(p\), Humidity \(h\), and CO2 content \(x_c\). Taken around \(T = 20^oC\), \(p=101kPa\), \(h = 50\%\), \(x_c = 400 ppm\) and \(\lambda = 1530nm\)
|
||||
</div>
|
||||
|
||||
@ -52,7 +54,7 @@ Typical characteristics of commercial environmental units are shown in Table [2]
|
||||
|
||||
<a id="table--tab:environmental-units"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:environmental-units">Table 2</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:environmental-units">Table 2</a>:</span>
|
||||
Characteristics of Environmental Units
|
||||
</div>
|
||||
|
||||
|
36
content/zettels/interpolation.md
Normal file
36
content/zettels/interpolation.md
Normal file
@ -0,0 +1,36 @@
|
||||
+++
|
||||
title = "Interpolation"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Band limited interpolation {#band-limited-interpolation}
|
||||
|
||||
<https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula>
|
||||
|
||||
```matlab
|
||||
rng default
|
||||
```
|
||||
|
||||
```matlab
|
||||
t = 1:10; % Time Vector [s]
|
||||
x = randn(size(t))'; % Sampled data [V]
|
||||
|
||||
ts = linspace(-5,15,600); % New time vector [s]
|
||||
[Ts,T] = ndgrid(ts,t);
|
||||
y = sinc(Ts - T)*x;
|
||||
```
|
||||
|
||||
<a id="figure--fig:interpolation-perfect-example"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interpolation_perfect_example.png" caption="<span class=\"figure-number\">Figure 1: </span>Sampled and interpolated signals" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
@ -62,7 +62,7 @@ The Amplified Piezo Actuators principle is presented in (<a href="#citeproc_bib_
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in (<a href="#citeproc_bib_item_4">Lucinskis and Mangeot 2016</a>).
|
||||
A model of an amplified piezoelectric actuator is described in (<a href="#citeproc_bib_item_5">Lucinskis and Mangeot 2016</a>).
|
||||
|
||||
Typical topology of mechanically amplified piezoelectric actuators are displayed in Figure [1](#figure--fig:ling16-topology-piezo-mechanism-types) (from (<a href="#citeproc_bib_item_3">Ling et al. 2016</a>)).
|
||||
|
||||
@ -199,6 +199,14 @@ When an external load is applied, the stiffness of the load (\\(k\_e\\)) determi
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="<span class=\"figure-number\">Figure 5: </span>Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Piezoelectric stiffness - Electrical Boundaries {#piezoelectric-stiffness-electrical-boundaries}
|
||||
|
||||
The stiffness of the piezoelectric stack varies a little bit whether it is open-circuited or short-circuited (<a href="#citeproc_bib_item_4">Liu et al. 2007</a>).
|
||||
This this experiment: <https://research.tdehaeze.xyz/test-bench-force-sensor/>.
|
||||
|
||||
Therefore, if the piezoelectric actuator is driven by a charge amplifier (i.e. high input impedance), the stiffness will be a little bit higher than if it is driven with a voltage amplifier (i.e. small input impedance).
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}).
|
||||
@ -211,5 +219,6 @@ Limitations of the electronics is discussed in [Design, modeling and control of
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” <i>Ferroelectrics</i> 351 (1): 3–14. doi:<a href="https://doi.org/10.1080/00150190701351865">10.1080/00150190701351865</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Ling, Mingxiang, Junyi Cao, Minghua Zeng, Jing Lin, and Daniel J Inman. 2016. “Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms.” <i>Smart Materials and Structures</i> 25 (7): 075022. doi:<a href="https://doi.org/10.1088/0964-1726/25/7/075022">10.1088/0964-1726/25/7/075022</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Liu, W. Q., Z. H. Feng, R. B. Liu, and J. Zhang. 2007. “The Influence of Preamplifiers on the Piezoelectric Sensor’s Dynamic Property.” <i>Review of Scientific Instruments</i> 78 (12): 125107. doi:<a href="https://doi.org/10.1063/1.2825404">10.1063/1.2825404</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”</div>
|
||||
</div>
|
||||
|
@ -24,12 +24,13 @@ High precision positioning sensors include:
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (<a href="#citeproc_bib_item_2">Fleming 2013</a>) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor.md" >}}))
|
||||
- (<a href="#citeproc_bib_item_3">Gao et al. 2015</a>)
|
||||
|
||||
Table [1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>).
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a>:</span>
|
||||
Characteristics of relative measurement sensors
|
||||
</div>
|
||||
|
||||
@ -46,7 +47,7 @@ Table [2](#table--tab:summary-position-sensors) it taken from (<a href="#citepro
|
||||
|
||||
<a id="table--tab:summary-position-sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a>:</span>
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\)
|
||||
</div>
|
||||
|
||||
@ -63,7 +64,7 @@ Table [2](#table--tab:summary-position-sensors) it taken from (<a href="#citepro
|
||||
|
||||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||||
|
||||
Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_3">Thurner et al. 2015</a>).
|
||||
Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_4">Thurner et al. 2015</a>).
|
||||
|
||||
<a id="figure--fig:position-sensors-thurner15"></a>
|
||||
|
||||
@ -75,5 +76,6 @@ Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#cit
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190 (nil): 106–26. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 3051–63.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” <i>Cirp Annals</i> 64 (2): 773–96. doi:<a href="https://doi.org/10.1016/j.cirp.2015.05.009">10.1016/j.cirp.2015.05.009</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 3051–63.</div>
|
||||
</div>
|
||||
|
@ -9,6 +9,19 @@ Tags
|
||||
:
|
||||
|
||||
|
||||
## Linear Stage {#linear-stage}
|
||||
|
||||
|
||||
## Spindle {#spindle}
|
||||
|
||||
<https://www.labmotionsystems.com/>
|
||||
|
||||
|
||||
## Stewart Platforms {#stewart-platforms}
|
||||
|
||||
See [Stewart Platforms]({{< relref "stewart_platforms.md" >}}).
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Country |
|
||||
@ -17,6 +30,7 @@ Tags
|
||||
| [PI](https://www.physikinstrumente.com/en/) | USA |
|
||||
| [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany |
|
||||
| [Newport](https://www.newport.com/c/manual-positioning) | |
|
||||
| [LAB](https://www.labmotionsystems.com/products/z-stages/) | Belgium |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
@ -38,6 +38,11 @@ Tips:
|
||||
<https://in.mathworks.com/help/slcontrol/ug/specify-model-portion-to-linearize.html>
|
||||
|
||||
|
||||
## Configure Simulink Programmatically {#configure-simulink-programmatically}
|
||||
|
||||
<https://fr.mathworks.com/help/simulink/slref/common-block-parameters.html>
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
|
@ -62,6 +62,7 @@ Nice references:
|
||||
|
||||
- (<a href="#citeproc_bib_item_3">Vyas, Patel, and Shah 2015</a>)
|
||||
- (<a href="#citeproc_bib_item_2">Ronquist and Winroth 2016</a>)
|
||||
- <http://www.euclidres.com/apps/stepper_motor/stepper.html>
|
||||
|
||||
<div class="seealso">
|
||||
|
||||
|
@ -15,8 +15,17 @@ Goals
|
||||
|
||||
Tools
|
||||
|
||||
(<a href="#citeproc_bib_item_3">Yoon et al. 2019</a>)
|
||||
(<a href="#citeproc_bib_item_4">Zanasi and Morselli 2002</a>)
|
||||
(<a href="#citeproc_bib_item_2">Singer and Seering 1991</a>)
|
||||
Chapter 4.2.4 of (<a href="#citeproc_bib_item_1">Schmidt, Schitter, and Rankers 2020</a>)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Singer, Neil C., and Warren P. Seering. 1991. “Preshaping Command Inputs to Reduce System Vibration.” In <i>Artificial Intelligence at Mit: Expanding Frontiers</i>, 128–47. Cambridge, MA, USA: MIT Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Yoon, Hyun Joong, Seong Youb Chung, Han Sol Kang, and Myun Joong Hwang. 2019. “Trapezoidal Motion Profile to Suppress Residual Vibration of Flexible Object Moved by Robot.” <i>Electronics</i> 8 (1): 30. doi:<a href="https://doi.org/10.3390/electronics8010030">10.3390/electronics8010030</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Zanasi, R., and R. Morselli. 2002. “Third Order Trajectory Generator Satisfying Velocity, Acceleration and Jerk Constraints.” In <i>Proceedings of the International Conference on Control Applications</i>, 2:1165–70 vol.2. doi:<a href="https://doi.org/10.1109/CCA.2002.1038770">10.1109/CCA.2002.1038770</a>.</div>
|
||||
</div>
|
||||
|
@ -15,6 +15,80 @@ A Transconductance Amplifier converts the control voltage into current with a cu
|
||||
|
||||
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
|
||||
|
||||
Such amplifier is used to control motors (e.g. voice coil, BLDC, stepper motors, ...).
|
||||
|
||||
|
||||
## Specifications {#specifications}
|
||||
|
||||
|
||||
### Noise {#noise}
|
||||
|
||||
```matlab
|
||||
BL = 20; % [N/A]
|
||||
m = 1; % [kg]
|
||||
```
|
||||
|
||||
```matlab
|
||||
freq = logspace(0,4,1000); % [Hz]
|
||||
|
||||
%% Current noise of the amplifier
|
||||
I_asd = 1e-6*ones(size(freq)); % [A/sqrt(Hz)]
|
||||
```
|
||||
|
||||
```matlab
|
||||
x_asd = I_asd*(BL/m)./(2*pi*freq).^2;
|
||||
```
|
||||
|
||||
```matlab
|
||||
figure;
|
||||
plot(freq, x_asd)
|
||||
xlabel("Frequency [Hz]");
|
||||
ylabel("ASD [$m/\sqrt{Hz}$]");
|
||||
set(gca, 'Xscale', 'log');
|
||||
set(gca, 'Yscale', 'log');
|
||||
```
|
||||
|
||||
```matlab
|
||||
figure;
|
||||
plot(freq, sqrt(flip(-cumtrapz(flip(freq), flip(x_asd.^2)))))
|
||||
xlabel("Frequency [Hz]");
|
||||
ylabel("Cumulative Amplitude Spectrum [m rms]");
|
||||
set(gca, 'Xscale', 'log');
|
||||
set(gca, 'Yscale', 'log');
|
||||
```
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
<a id="table--tab:table-name"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-name">Table 1</a>:</span>
|
||||
Drivers with integrated controllers
|
||||
</div>
|
||||
|
||||
| Model | Manufacturer | Linear / PWM | Axes | Interfaces | Feedback | Current Bandwidth |
|
||||
|-----------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------|---------------|--------------|-------------------|
|
||||
| [Apogee](https://prodrive-technologies.com/motion/products/servo-drives/apogee-kepler-series/) | Prodrive | PWM | 1 to 3 | +/-10V 16bits | Encoder | 7kHz |
|
||||
| [LWM7S](https://www.maccon.co.uk/linear-servo-amplifier.html) | Macon | Linear | 1 | | Encoder/Hall | |
|
||||
| [Soloist ML](https://www.aerotech.com/product/motion-control-platforms/soloist-ml-controller-and-linear-digital-drive/) | Aerotech | Linear | 1 | +/-10V 16bits | Encoder/Hall | |
|
||||
| [Automation1 XL4s](https://www.aerotech.com/product/motion-control-platforms/automation1-xl4s-high-performance-voice-coil-drive/) | Aerotech | Linear | 1 (voice coil) | +/-10V 16bits | ? | |
|
||||
| [EM-356B](https://electromen.com/en/products/item/motor-controllers/brushless-dc-motor/EM-356B) | Electromen | PWM | 1 | 0-10V | Hall | |
|
||||
| [azbh10a4](https://www.a-m-c.com/product/azbh10a4/) | AMC | PWM | 1 | +/-10V | Hall | |
|
||||
| [S3-400/8](https://prodrive-technologies.com/motion/products/servo-drives/cygnus-series/) | Prodrive | PWM | 1 | +/-10V | Encoder | 1kHz |
|
||||
| [X-MCC](https://www.zaber.com/products/controllers-joysticks/X-MCC) | Zaber | ?? | 1 to 4 | | | |
|
||||
|
||||
<a id="table--tab:table-name"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-name">Table 2</a>:</span>
|
||||
Pure Drivers
|
||||
</div>
|
||||
|
||||
| Model | Manufacturer | Linear / PWM | Axes | Interfaces | Current Bandwidth |
|
||||
|-----------------------------------------------------------------------------------------------------------|--------------|--------------|------|------------|-------------------|
|
||||
| [LA300](https://varedan.com/product/analog-linear-servo-amplifiers/la-300-analog-linear-servo-amplifier/) | Varedan | Linear | 3 | +/-10V | 10kHz |
|
||||
| [LA24](https://www.cedrat-technologies.com/en/technologies/actuators/magnetic-actuators-motors.html) | Cedrat | Linear | 3 | +/-10V | 35kHz |
|
||||
| [CMAu10](https://www.cedrat-technologies.com/en/products/magnetic-controllers/oem-amplifiers.html) | Cedrat | Linear | 1 | +/-10V | 5kHz |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
|
@ -16,6 +16,35 @@ A transimpedance amplifier is a "current to voltage converter" and is also named
|
||||
It is generally used to interface a sensor which outputs a current proportional to the measurement parameter ([Quadrant Photodiodes]({{< relref "quadrant_photodiodes.md" >}}) for instance).
|
||||
|
||||
|
||||
## Basic Circuit {#basic-circuit}
|
||||
|
||||
A basic transimpedance amplifier circuit is shown in Figure [1](#figure--fig:transimpedance-amplifier-schematic).
|
||||
|
||||
It produces an output voltage \\(V\_{\text{out}}\\) proportional to the input current \\(I\_{\text{sig}}\\):
|
||||
|
||||
\begin{equation}
|
||||
\boxed{V\_{\text{out}} = -I\_{\text{sig}} R\_f}
|
||||
\end{equation}
|
||||
|
||||
The gain of the amplifier is simply \\(-R\_f\\) in [V/A].
|
||||
|
||||
The feedback resistor creates a Johnson noise that corresponds to a current noise:
|
||||
|
||||
\begin{equation}
|
||||
i\_{n} = \sqrt{4kT/R\_f} \quad [A/\sqrt{Hz}]
|
||||
\end{equation}
|
||||
|
||||
This is usually larger than the amplifier input current noise.
|
||||
|
||||
<a id="figure--fig:transimpedance-amplifier-schematic"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/transimpedance_amplifier_schematic.png" caption="<span class=\"figure-number\">Figure 1: </span>Transimpedance Amplifier; Current in, Voltage out" >}}
|
||||
|
||||
More information about transimpedance can be found in [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition.md" >}}), chapter 8.11.4, especially on the trade-off between gain, noise and bandwidth.
|
||||
|
||||
See [this](https://www.hardware-x.com/article/S2468-0672(21)00062-6/fulltext) open hardware design.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Country |
|
||||
@ -24,6 +53,7 @@ It is generally used to interface a sensor which outputs a current proportional
|
||||
| [MMF](https://www.mmf.de/signal_conditioners.htm) | Germany |
|
||||
| [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||
| [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7083) | UK |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
29
content/zettels/two_stage_actuator.md
Normal file
29
content/zettels/two_stage_actuator.md
Normal file
@ -0,0 +1,29 @@
|
||||
+++
|
||||
title = "Two Stage Actuator"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
The idea is to combine:
|
||||
|
||||
- A long stroke, low precision stage
|
||||
- A short stroke, high precision stage
|
||||
|
||||
The goal is therefore to obtain a long stroke high precision stage.
|
||||
|
||||
|
||||
## References {#references}
|
||||
|
||||
Books and PhD:
|
||||
|
||||
- (<a href="#citeproc_bib_item_1">Qingsong 2016</a>)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Qingsong. 2016. <i>Design and Implementation of Large-Range Compliant Micropositioning Systems</i>. Singapore: Wiley.</div>
|
||||
</div>
|
@ -27,18 +27,44 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Country |
|
||||
|--------------------------------------------------------------|-------------|
|
||||
| [Geeplus](https://www.geeplus.com/) | UK |
|
||||
| [Maccon](https://www.maccon.de/en.html) | Germany |
|
||||
| [TDS PP](https://www.tds-pp.com/en/) | Switzerland |
|
||||
| [H2tech](https://www.h2wtech.com/) | USA |
|
||||
| [PBA Systems](http://www.pbasystems.com.sg/) | Singapore |
|
||||
| [Celera Motion](https://www.celeramotion.com/) | USA |
|
||||
| [Beikimco](http://www.beikimco.com/) | USA |
|
||||
| [Electromate](https://www.electromate.com/) | Canada |
|
||||
| [Magnetic Innovations](https://www.magneticinnovations.com/) | Netherlands |
|
||||
| [Monticont](http://www.moticont.com/) | USA |
|
||||
| Manufacturers | Country |
|
||||
|-------------------------------------------------------------------------------------|-------------|
|
||||
| [Geeplus](https://www.geeplus.com/) | UK |
|
||||
| [Maccon](https://www.maccon.de/en.html) | Germany |
|
||||
| [TDS PP](https://www.tds-pp.com/en/product/linear-voice-coil-actuators-avm/) | Switzerland |
|
||||
| [H2tech](https://www.h2wtech.com/) | USA |
|
||||
| [PBA Systems](https://www.pbasystems.com.sg/product/circular-voice-coil-motor-cvc/) | Singapore |
|
||||
| [Beikimco](http://www.beikimco.com/) | USA |
|
||||
| [Magnetic Innovations](https://www.magneticinnovations.com/) | Netherlands |
|
||||
| [Monticont](http://www.moticont.com/) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14116) | USA |
|
||||
| [Akribis](https://akribis-sys.com/products/voice-coil-motors/avm-series) | USA |
|
||||
|
||||
|
||||
## Voice Coil Stages {#voice-coil-stages}
|
||||
|
||||
| Manufacturers | Country |
|
||||
|-----------------------------------------------------------------------------|-------------|
|
||||
| [TDS PP](https://www.tds-pp.com/en/product/voice-coil-actuator-stages/) | Switzerland |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=14930) | USA |
|
||||
| [H2tech](https://www.h2wtech.com/category/voice-coil-stages#productInfo1) | USA |
|
||||
|
||||
|
||||
## Linear Actuators {#linear-actuators}
|
||||
|
||||
| Manufacturers | Country |
|
||||
|----------------------------------------------------------------------------------------------------------|-------------|
|
||||
| [TDS PP](https://www.tds-pp.com/en/products/linear-actuators/) | Switzerland |
|
||||
| [PBA Systems](https://www.pbasystems.com.sg/product-category/precision-robotics/direct-drive-motors/) | Singapore |
|
||||
| [Celera Motion](https://www.celeramotion.com/applimotion/products/direct-drive-frameless-linear-motors/) | USA |
|
||||
| [Akribis](https://akribis-sys.com/products/linear-motors) | USA |
|
||||
| [Aerotech](https://www.aerotech.com/motion-and-positioning/motors-products/) | USA |
|
||||
|
||||
Linear Stages
|
||||
|
||||
| Manufacturers | Country |
|
||||
|----------------------------------------------------------------------------|---------|
|
||||
| [H2tech](https://www.h2wtech.com/category/single-rail-stages#productInfo1) | USA |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
BIN
static/ox-hugo/interpolation_perfect_example.png
Normal file
BIN
static/ox-hugo/interpolation_perfect_example.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 34 KiB |
BIN
static/ox-hugo/transimpedance_amplifier_schematic.png
Normal file
BIN
static/ox-hugo/transimpedance_amplifier_schematic.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
Loading…
Reference in New Issue
Block a user