Update Content - 2022-08-24
This commit is contained in:
77
content/zettels/electronic_noise.md
Normal file
77
content/zettels/electronic_noise.md
Normal file
@@ -0,0 +1,77 @@
|
||||
+++
|
||||
title = "Electronic Noise"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics.md" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})
|
||||
|
||||
|
||||
## Thermal (Johnson) Noise {#thermal--johnson--noise}
|
||||
|
||||
Thermal noise is generated by the thermal agitation of the electrons inside the electrical conductor.
|
||||
Its Power Spectral Density is equal to:
|
||||
|
||||
\begin{equation}
|
||||
S\_T \approx 4 k T \text{Re}(Z(f)) \quad [V^2/Hz]
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
with \\(k = 1.38 \cdot 10^{-23} \\,[J/K]\\) the Boltzmann's constant, \\(T\\) the temperature [K] and \\(Z(f)\\) the frequency dependent impedance of the system.
|
||||
|
||||
This noise can be modeled as a voltage source in series with the system impedance.
|
||||
|
||||
| Resistance | PSD \\([V^2 / Hz]\\) | ASD \\([V/\sqrt{Hz}]\\) | RMS (1kHz) | RMS (10kHz) |
|
||||
|-----------------|--------------------------|--------------------------|------------|-------------|
|
||||
| \\(1 \Omega\\) | \\(1.6 \cdot 10^{-20}\\) | \\(1.2 \cdot 10^{-10}\\) | 4nV | 130nV |
|
||||
| \\(1 k\Omega\\) | \\(1.6 \cdot 10^{-17}\\) | \\(4 \cdot 10^{-9}\\) | 130nV | 4uV |
|
||||
| \\(1 M\Omega\\) | \\(1.6 \cdot 10^{-14}\\) | \\(1.2 \cdot 10^{-7}\\) | 4uV | 130uV |
|
||||
|
||||
|
||||
## Shot Noise {#shot-noise}
|
||||
|
||||
Seen with junctions in a transistor.
|
||||
It has a white spectral density:
|
||||
|
||||
\begin{equation}
|
||||
S\_S = 2 q\_e i\_{dc} \ [A^2/Hz]
|
||||
\end{equation}
|
||||
|
||||
with \\(q\_e\\) the electronic charge (\\(1.6 \cdot 10^{-19}\\, [C]\\)), \\(i\_{dc}\\) the average current [A].
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
A current of 1 A will introduce noise with a STD of \\(10 \cdot 10^{-9}\\,[A]\\) from zero up to one kHz.
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
## Excess Noise (or \\(1/f\\) noise) {#excess-noise--or-1-f-noise}
|
||||
|
||||
It results from fluctuating conductivity due to imperfect contact between two materials.
|
||||
The PSD of excess noise increases when the frequency decreases:
|
||||
\\[ S\_E = \frac{K\_f}{f^\alpha}\ [V^2/Hz] \\]
|
||||
where \\(K\_f\\) is dependent on the average voltage drop over the resistor and the index \\(\alpha\\) is usually between 0.8 and 1.4, and often set to unity for approximate calculation.
|
||||
|
||||
|
||||
## Noise of Amplifiers {#noise-of-amplifiers}
|
||||
|
||||
The noise of amplifiers can be modelled as shown in Figure [1](#figure--fig:electronic-amplifier-noise).
|
||||
|
||||
<a id="figure--fig:electronic-amplifier-noise"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/electronic_amplifier_noise.png" caption="<span class=\"figure-number\">Figure 1: </span>Amplifier noise model" >}}
|
||||
|
||||
The identification of this noise is a two steps process:
|
||||
|
||||
1. The amplifier input is short-circuited such that only \\(V^2(f)\\) has an impact on the output.
|
||||
The output noise is measured and \\(V^2\\) in \\([V^2/Hz]\\) is identified
|
||||
2. The amplifier input is open-circuited such that only \\(I^2(f)\\) has an impact on the output.
|
||||
The output noise is measured and \\(I^2(f)\\) in \\([A^2/Hz]\\) is identified.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
Reference in New Issue
Block a user