bibliography: => #+BIBLIOGRAPHY: here

This commit is contained in:
2021-05-02 22:18:30 +02:00
parent a79f30c4d8
commit dfdbe99a8d
127 changed files with 1076 additions and 1162 deletions

View File

@@ -11,9 +11,9 @@ Tags
Resources:
- ([Skogestad and Postlethwaite 2007](#org4c8b20e))
- ([Toivonen 2002](#org81db503))
- ([Zhang 2011](#orgc4d2be1))
- ([Skogestad and Postlethwaite 2007](#orga6846b3))
- ([Toivonen 2002](#org300cd1c))
- ([Zhang 2011](#org037ea69))
## Definition {#definition}
@@ -176,7 +176,7 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
As explained in ([Monkhorst 2004](#orgc401feb)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
As explained in ([Monkhorst 2004](#org16354b5)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
@@ -184,10 +184,10 @@ As explained in ([Monkhorst 2004](#orgc401feb)), the \\(\mathcal{H}\_2\\) norm h
## Bibliography {#bibliography}
<a id="orgc401feb"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
<a id="org16354b5"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
<a id="org4c8b20e"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
<a id="orga6846b3"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
<a id="org81db503"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
<a id="org300cd1c"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
<a id="orgc4d2be1"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
<a id="org037ea69"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.