bibliography: => #+BIBLIOGRAPHY: here
This commit is contained in:
@@ -17,19 +17,19 @@ This can be typically used to interface with piezoelectric sensors.
|
||||
|
||||
## Basic Circuit {#basic-circuit}
|
||||
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org45de288) (taken from ([Fleming 2010](#org2341229))) and Figure [2](#org8955723) (taken from ([Schmidt, Schitter, and Rankers 2014](#orgf9a1421)))
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org7d016e2) (taken from ([Fleming 2010](#org467f88f))) and Figure [2](#orgb83f736) (taken from ([Schmidt, Schitter, and Rankers 2014](#org80f2485)))
|
||||
|
||||
<a id="org45de288"></a>
|
||||
<a id="org7d016e2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||
|
||||
<a id="org8955723"></a>
|
||||
<a id="orgb83f736"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||
|
||||
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
||||
|
||||
The gain of the charge amplified (Figure [1](#org45de288)) is equal to:
|
||||
The gain of the charge amplified (Figure [1](#org7d016e2)) is equal to:
|
||||
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
||||
|
||||
|
||||
@@ -50,6 +50,6 @@ The gain of the charge amplified (Figure [1](#org45de288)) is equal to:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2341229"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org467f88f"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="orgf9a1421"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="org80f2485"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
Reference in New Issue
Block a user