bibliography: => #+BIBLIOGRAPHY: here

This commit is contained in:
2021-05-02 22:18:30 +02:00
parent a79f30c4d8
commit dfdbe99a8d
127 changed files with 1076 additions and 1162 deletions

View File

@@ -1,6 +1,7 @@
+++
title = "Analog to Digital Converters"
author = ["Thomas Dehaeze"]
keywords = ["electronics"]
draft = false
+++
@@ -12,7 +13,7 @@ Tags
<https://dewesoft.com/daq/types-of-adc-converters>
- Delta Sigma ([Baker 2011](#orgb22f10b))
- Delta Sigma ([Baker 2011](#org60f0e22))
- Successive Approximation
@@ -31,9 +32,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org57805de)).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgee08810)).
<a id="org57805de"></a>
<a id="orgee08810"></a>
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
@@ -88,4 +89,4 @@ The quantization is:
## Bibliography {#bibliography}
<a id="orgb22f10b"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
<a id="org60f0e22"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.