bibliography: => #+BIBLIOGRAPHY: here
This commit is contained in:
@@ -29,5 +29,3 @@ Tags
|
||||
| Manufacturer | links | Country |
|
||||
|--------------|----------------------------------|---------|
|
||||
| ACE | [link](https://www.ace-ace.com/) | Germany |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -7,14 +7,14 @@ draft = false
|
||||
Tags
|
||||
: [Complementary Filters]({{< relref "complementary_filters" >}})
|
||||
|
||||
([Beijen et al. 2019](#orgc359149))
|
||||
([Beijen et al. 2019](#orgc6f7554))
|
||||
|
||||
([Beijen 2018](#org585205d)) (section 6.3.1)
|
||||
([Beijen 2018](#org8e8fef4)) (section 6.3.1)
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org585205d"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
|
||||
<a id="org8e8fef4"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
|
||||
|
||||
<a id="orgc359149"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:106–16. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
|
||||
<a id="orgc6f7554"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:106–16. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
|
||||
|
@@ -17,12 +17,12 @@ Links to specific actuators:
|
||||
|
||||
For vibration isolation:
|
||||
|
||||
- In ([Ito and Schitter 2016](#org4bbf168)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
- In ([Ito and Schitter 2016](#orga71edd4)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
|
||||
|
||||
## Brush-less DC Motor {#brush-less-dc-motor}
|
||||
|
||||
- ([Yedamale 2003](#org1638958))
|
||||
- ([Yedamale 2003](#org0ac1a74))
|
||||
|
||||
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
|
||||
|
||||
@@ -30,6 +30,6 @@ For vibration isolation:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org4bbf168"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
<a id="orga71edd4"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
|
||||
<a id="org1638958"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
<a id="org0ac1a74"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
|
@@ -1,6 +1,7 @@
|
||||
+++
|
||||
title = "Analog to Digital Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
keywords = ["electronics"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -12,7 +13,7 @@ Tags
|
||||
|
||||
<https://dewesoft.com/daq/types-of-adc-converters>
|
||||
|
||||
- Delta Sigma ([Baker 2011](#orgb22f10b))
|
||||
- Delta Sigma ([Baker 2011](#org60f0e22))
|
||||
- Successive Approximation
|
||||
|
||||
|
||||
@@ -31,9 +32,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
|
||||
Interestingly, the noise amplitude is uniformly distributed.
|
||||
|
||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org57805de)).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgee08810)).
|
||||
|
||||
<a id="org57805de"></a>
|
||||
<a id="orgee08810"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||
|
||||
@@ -88,4 +89,4 @@ The quantization is:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgb22f10b"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
<a id="org60f0e22"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
|
@@ -7,8 +7,6 @@ draft = false
|
||||
Tags
|
||||
:
|
||||
|
||||
<a id="org3e05411"></a>
|
||||
<a id="org67aca6e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bipolar_transistor_basic_circuits.svg" caption="Figure 1: 5 basic circuits using the bipolar transistor" >}}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -29,5 +29,3 @@ Tags
|
||||
## Software {#software}
|
||||
|
||||
- [WireViz](https://github.com/formatc1702/WireViz) is a nice software to easily document cables and wiring harnesses
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -17,19 +17,19 @@ This can be typically used to interface with piezoelectric sensors.
|
||||
|
||||
## Basic Circuit {#basic-circuit}
|
||||
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org45de288) (taken from ([Fleming 2010](#org2341229))) and Figure [2](#org8955723) (taken from ([Schmidt, Schitter, and Rankers 2014](#orgf9a1421)))
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org7d016e2) (taken from ([Fleming 2010](#org467f88f))) and Figure [2](#orgb83f736) (taken from ([Schmidt, Schitter, and Rankers 2014](#org80f2485)))
|
||||
|
||||
<a id="org45de288"></a>
|
||||
<a id="org7d016e2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||
|
||||
<a id="org8955723"></a>
|
||||
<a id="orgb83f736"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||
|
||||
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
||||
|
||||
The gain of the charge amplified (Figure [1](#org45de288)) is equal to:
|
||||
The gain of the charge amplified (Figure [1](#org7d016e2)) is equal to:
|
||||
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
||||
|
||||
|
||||
@@ -50,6 +50,6 @@ The gain of the charge amplified (Figure [1](#org45de288)) is equal to:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2341229"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org467f88f"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="orgf9a1421"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="org80f2485"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
|
||||
|
||||
According to ([Preumont 2018](#org5d050e8)):
|
||||
According to ([Preumont 2018](#orgbf8f4c5)):
|
||||
|
||||
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
|
||||
>
|
||||
@@ -19,9 +19,9 @@ According to ([Preumont 2018](#org5d050e8)):
|
||||
|
||||
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
|
||||
|
||||
From Figure [1](#org0d605b2), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
From Figure [1](#org5d460f9), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
|
||||
<a id="org0d605b2"></a>
|
||||
<a id="org5d460f9"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
|
||||
|
||||
@@ -38,6 +38,7 @@ Of course, this will reduce the sensibility.
|
||||
- [ ] What happens is small pieces of actuators are mixed with small pieces of sensors?
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org5d050e8"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="orgbf8f4c5"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
@@ -10,10 +10,10 @@ Tags
|
||||
|
||||
## Complementary Filters Synthesis {#complementary-filters-synthesis}
|
||||
|
||||
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#org0c35169)).
|
||||
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#org066e272)).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org0c35169"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 459–64. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.
|
||||
<a id="org066e272"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 459–64. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.
|
||||
|
@@ -19,10 +19,8 @@ Tags
|
||||
|
||||
## BNC {#bnc}
|
||||
|
||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgfe209b2).
|
||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgd1b23d3).
|
||||
|
||||
<a id="orgfe209b2"></a>
|
||||
<a id="orgd1b23d3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -13,7 +13,7 @@ Tags
|
||||
|
||||
## Special Properties {#special-properties}
|
||||
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org0969434)))
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org2ea9cff)))
|
||||
|
||||
> 1. The payload mass-inertia matrix is diagonal
|
||||
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
|
||||
@@ -22,4 +22,4 @@ Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org0969434"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org2ea9cff"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
8
content/zettels/decoupled_control.md
Normal file
8
content/zettels/decoupled_control.md
Normal file
@@ -0,0 +1,8 @@
|
||||
+++
|
||||
title = "Decoupled Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Multivariable Control]({{< relref "multivariable_control" >}})
|
@@ -6,5 +6,3 @@ draft = false
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,23 +4,15 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Dynamic error budgeting, a design approach]({{< relref "monkhorst04_dynam_error_budget" >}})
|
||||
- [Systems and Signals Norms]({{< relref "norms" >}})
|
||||
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Mechatronic design of a magnetically suspended rotating platform]({{< relref "jabben07_mechat" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#orgce880aa)).
|
||||
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#orgda61e4e)).
|
||||
|
||||
|
||||
## Step by Step process {#step-by-step-process}
|
||||
|
||||
Taken from ([Monkhorst 2004](#orgce880aa)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
Taken from ([Monkhorst 2004](#orgda61e4e)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
|
||||
> Step by step, the process is as follows:
|
||||
>
|
||||
@@ -34,6 +26,7 @@ Taken from ([Monkhorst 2004](#orgce880aa)): ([Notes]({{< relref "monkhorst04_dyn
|
||||
> Iterate until the error budget is meet.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgce880aa"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="orgda61e4e"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
@@ -18,5 +18,3 @@ Tags
|
||||
| [Kaman](https://www.kamansensors.com/product/smt-9700/) | USA |
|
||||
| [Keyence](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
|
||||
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -29,14 +29,14 @@ With:
|
||||
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
|
||||
- \\(\xi = \frac{C\_2}{C\_1}\\)
|
||||
|
||||
<a id="org21a1d35"></a>
|
||||
<a id="orgb2c3453"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_active_second_order_low_pass_filter.png" caption="Figure 1: Second Order Low Pass Filter" >}}
|
||||
|
||||
|
||||
## High Pass Filter {#high-pass-filter}
|
||||
|
||||
Same as [1](#org21a1d35) but by exchanging R1 with C1 and R2 with C2
|
||||
Same as [1](#orgb2c3453) but by exchanging R1 with C1 and R2 with C2
|
||||
|
||||
\begin{equation}
|
||||
\frac{V\_o}{V\_i}(s) = \frac{R^2 C\_1 C\_2 s^2}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
|
||||
@@ -46,5 +46,3 @@ With:
|
||||
|
||||
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
|
||||
- \\(\xi = \frac{C\_2}{C\_1}\\)
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -16,29 +16,27 @@ TODOS:
|
||||
|
||||
## First Order Low Pass Filter {#first-order-low-pass-filter}
|
||||
|
||||
<a id="orgf718550"></a>
|
||||
<a id="org1c6b488"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_first_order_low_pass_filter.png" caption="Figure 1: First Order Low Pass Filter using an RC circuit" >}}
|
||||
|
||||
|
||||
## First Order High Pass Filter {#first-order-high-pass-filter}
|
||||
|
||||
<a id="orgc9b929d"></a>
|
||||
<a id="orgecf7617"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_first_order_high_pass_filter.png" caption="Figure 2: First Order High Pass Filter using an RC circuit" >}}
|
||||
|
||||
|
||||
## Second Order Low Pass Filter {#second-order-low-pass-filter}
|
||||
|
||||
<a id="orgb56edb0"></a>
|
||||
<a id="orgcfc4c15"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_second_order_low_pass_filter.png" caption="Figure 3: Second Order Low Pass Filter using an RLC circuit" >}}
|
||||
|
||||
|
||||
## Second Order High Pass Filter {#second-order-high-pass-filter}
|
||||
|
||||
<a id="org1bcacc5"></a>
|
||||
<a id="org0b32ffe"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_second_order_high_pass_filter.png" caption="Figure 4: Second Order High Pass Filter using an RLC circuit" >}}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,19 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Charge Amplifiers]({{< relref "charge_amplifiers" >}})
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Analog to Digital Converters]({{< relref "analog_to_digital_converters" >}})
|
||||
- [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}})
|
||||
- [Digital to Analog Converters]({{< relref "digital_to_analog_converters" >}})
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
- [Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Vibration Simulation using Matlab and ANSYS]({{< relref "hatch00_vibrat_matlab_ansys" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
@@ -16,17 +12,18 @@ Tags
|
||||
|
||||
Some resources:
|
||||
|
||||
- ([Hatch 2000](#org4303bb7)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- ([Khot and Yelve 2011](#org31239e2))
|
||||
- ([Kovarac et al. 2015](#org304a9dd))
|
||||
- ([Hatch 2000](#orgddee845)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- ([Khot and Yelve 2011](#orgb0a5955))
|
||||
- ([Kovarac et al. 2015](#org7660da4))
|
||||
|
||||
The idea is to extract reduced state space model from Ansys into Matlab.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org4303bb7"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
|
||||
<a id="orgddee845"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
|
||||
|
||||
<a id="org31239e2"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:953–58.
|
||||
<a id="orgb0a5955"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:953–58.
|
||||
|
||||
<a id="org304a9dd"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 37–41.
|
||||
<a id="org7660da4"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 37–41.
|
||||
|
@@ -12,16 +12,16 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Lobontiu 2002](#orgf96bd1c))
|
||||
- ([Henein 2003](#org77c1a30))
|
||||
- ([Smith 2005](#orgdf03b02))
|
||||
- ([Soemers 2011](#orgc441221))
|
||||
- ([Cosandier 2017](#orgc637f07))
|
||||
- ([Lobontiu 2002](#org0e711a7))
|
||||
- ([Henein 2003](#org4fb65e1))
|
||||
- ([Smith 2005](#orgbf46163))
|
||||
- ([Soemers 2011](#orgf482067))
|
||||
- ([Cosandier 2017](#orgf099485))
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From ([Chen and McInroy 2000](#org26c43a0)):
|
||||
From ([Chen and McInroy 2000](#org14378b5)):
|
||||
|
||||
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
@@ -31,14 +31,14 @@ From ([Chen and McInroy 2000](#org26c43a0)):
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org26c43a0"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org14378b5"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="orgc637f07"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
<a id="orgf099485"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org77c1a30"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
<a id="org4fb65e1"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="orgf96bd1c"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
<a id="org0e711a7"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="orgdf03b02"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
<a id="orgbf46163"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
|
||||
<a id="orgc441221"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
<a id="orgf482067"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
|
@@ -13,18 +13,19 @@ Tags
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
- ([Smith 2000](#org48aca5d))
|
||||
- ([Lobontiu 2002](#org45b1d4f))
|
||||
- ([Henein 2003](#org516fc89))
|
||||
- ([Cosandier 2017](#orgb511c9e))
|
||||
- ([Smith 2000](#org903194d))
|
||||
- ([Lobontiu 2002](#org353b748))
|
||||
- ([Henein 2003](#org26cb408))
|
||||
- ([Cosandier 2017](#org684f025))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgb511c9e"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
<a id="org684f025"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org516fc89"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
<a id="org26cb408"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="org45b1d4f"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
<a id="org353b748"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="org48aca5d"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
||||
<a id="org903194d"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
||||
|
@@ -17,9 +17,9 @@ There are two main technique for force sensors:
|
||||
|
||||
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
|
||||
|
||||
Main differences between the two are shown in Figure [1](#org921c881).
|
||||
Main differences between the two are shown in Figure [1](#orgd4cde6e).
|
||||
|
||||
<a id="org921c881"></a>
|
||||
<a id="orgd4cde6e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
|
||||
|
||||
@@ -29,7 +29,7 @@ Main differences between the two are shown in Figure [1](#org921c881).
|
||||
|
||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org26fffc0)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org6f75dec)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
@@ -75,6 +75,7 @@ However, if a charge conditioner is used, the signal will be doubled.
|
||||
| [Althen](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands |
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org26fffc0"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org6f75dec"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
@@ -15,16 +15,16 @@ The documentation for the toolbox is accessible [here](https://fomcon.net/fomcon
|
||||
Here are the parameters that are used to define the wanted properties of the fractional model:
|
||||
|
||||
```matlab
|
||||
wb = 2*pi*0.1; % Lowest frequency bound
|
||||
wh = 2*pi*1e3; % Highest frequency bound
|
||||
n = 8; % Approximation order
|
||||
r = 0.5; % Wanted slope, The corresponding phase will be pi*r
|
||||
wb = 2*pi*0.1; % Lowest frequency bound
|
||||
wh = 2*pi*1e3; % Highest frequency bound
|
||||
n = 8; % Approximation order
|
||||
r = 0.5; % Wanted slope, The corresponding phase will be pi*r
|
||||
```
|
||||
|
||||
Then, to create an approximation of a fractional-order operator \\(s^r\\) of order \\(n\\) which is valid in the frequency range \\([\omega\_b\, \omega\_h]\\), the `oustafod` function can be used:
|
||||
|
||||
```matlab
|
||||
G = oustafod(r,n,wb,wh);
|
||||
G = oustafod(r,n,wb,wh);
|
||||
```
|
||||
|
||||
```text
|
||||
@@ -37,10 +37,8 @@ G =
|
||||
Continuous-time transfer function.
|
||||
```
|
||||
|
||||
Few examples of different slopes are shown in Figure [1](#orgaa7c066).
|
||||
Few examples of different slopes are shown in Figure [1](#org9241d6d).
|
||||
|
||||
<a id="orgaa7c066"></a>
|
||||
<a id="org9241d6d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/approximate_deriv_int.png" caption="Figure 1: Example of fractional approximations" >}}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,38 +4,34 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Control of spacecraft and aircraft]({{< relref "bryson93_contr_spacec_aircr" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
High-Authority Control/Low-Authority Control
|
||||
|
||||
From ([Preumont 2018](#org2917245)):
|
||||
From ([Preumont 2018](#org4171546)):
|
||||
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org9ce3153). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org5a821d8). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
>
|
||||
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
|
||||
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
|
||||
> - The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)
|
||||
|
||||
<a id="org9ce3153"></a>
|
||||
<a id="org5a821d8"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="Figure 1: HAC-LAC Control Architecture" >}}
|
||||
|
||||
Nice papers:
|
||||
|
||||
- ([Williams and Antsaklis 1989](#orge6af6e6))
|
||||
- ([Aubrun 1980](#org05dd00f))
|
||||
- ([Williams and Antsaklis 1989](#orgb65b217))
|
||||
- ([Aubrun 1980](#org9a935c0))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org05dd00f"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):444–51. <https://doi.org/10.2514/3.56019>.
|
||||
<a id="org9a935c0"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):444–51. <https://doi.org/10.2514/3.56019>.
|
||||
|
||||
<a id="org2917245"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="org4171546"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="orge6af6e6"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.
|
||||
<a id="orgb65b217"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.
|
||||
|
@@ -10,10 +10,10 @@ Tags
|
||||
|
||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orge266e77))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orga0b31ea))
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orga092f9a))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgef1075b))
|
||||
|
||||
<a id="orgaa8be44"></a>
|
||||
<a id="org9a5fa73"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||
|
||||
@@ -35,7 +35,7 @@ Wireless Accelerometers
|
||||
|
||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||
|
||||
<a id="org47441e2"></a>
|
||||
<a id="org1693047"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||
|
||||
@@ -52,7 +52,7 @@ Wireless Accelerometers
|
||||
| [Guralp](https://www.guralp.com/products/surface) | UK |
|
||||
| [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada |
|
||||
|
||||
<a id="orga5e26ab"></a>
|
||||
<a id="org6d70737"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||
|
||||
@@ -60,6 +60,6 @@ Wireless Accelerometers
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orge266e77"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
<a id="orga092f9a"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
|
||||
<a id="orga0b31ea"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
<a id="orgef1075b"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
|
@@ -6,5 +6,3 @@ draft = false
|
||||
|
||||
Tags
|
||||
: [Active Damping]({{< relref "active_damping" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -24,7 +24,7 @@ Tags
|
||||
|
||||
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
|
||||
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org1b86993))).
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org90df4b2))).
|
||||
|
||||
<a id="table--tab:index-air"></a>
|
||||
<div class="table-caption">
|
||||
@@ -59,16 +59,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
|
||||
|
||||
## Interferometer Precision {#interferometer-precision}
|
||||
|
||||
Figure [1](#org3490ef0) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org3b0a481))).
|
||||
Figure [1](#org195a5db) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org4c766f1))).
|
||||
|
||||
<a id="org3490ef0"></a>
|
||||
<a id="org195a5db"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Sources of uncertainty {#sources-of-uncertainty}
|
||||
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org588696d)).
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org08e49c8)).
|
||||
|
||||
It includes:
|
||||
|
||||
@@ -78,10 +78,10 @@ It includes:
|
||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||
- These errors can partially be compensated using an environmental unit.
|
||||
- Air turbulence (Figure [2](#orgceb0667))
|
||||
- Air turbulence (Figure [2](#org7f738e4))
|
||||
- Non linearity
|
||||
|
||||
<a id="orgceb0667"></a>
|
||||
<a id="org7f738e4"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||
|
||||
@@ -89,8 +89,8 @@ It includes:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org588696d"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
<a id="org08e49c8"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
|
||||
<a id="org3b0a481"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
<a id="org4c766f1"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
||||
<a id="org1b86993"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
<a id="org90df4b2"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
|
@@ -32,7 +32,7 @@ Tags
|
||||
>
|
||||
> The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.
|
||||
|
||||
From ([Shaw and Srinivasan 1990](#orge62ce0f))
|
||||
From ([Shaw and Srinivasan 1990](#org82fbcc5))
|
||||
|
||||
> The FIR are capable of realizing filters with linear phase shift characteristics and furthermore are less susceptible to signal input and filter coefficient quantization effects.
|
||||
> However, their computational demands are excessively large because of the large number of multiplications and additions to be performed at each sampling interval.
|
||||
@@ -52,4 +52,4 @@ From <https://dsp.stackexchange.com/a/30999>
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orge62ce0f"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
<a id="org82fbcc5"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
|
@@ -15,5 +15,3 @@ Tags
|
||||
| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
|
||||
| [Keyence](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
|
||||
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
|
||||
|
||||
Let's consider Figure [1](#orga358a0b) where:
|
||||
Let's consider Figure [1](#orgbf5f22b) where:
|
||||
|
||||
- \\(m\\) is the mass in [kg]
|
||||
- \\(ḱ\\) is the spring stiffness in [N/m]
|
||||
@@ -20,7 +20,7 @@ Let's consider Figure [1](#orga358a0b) where:
|
||||
- \\(w\\) is ground motion
|
||||
- \\(x\\) is the absolute mass motion
|
||||
|
||||
<a id="orga358a0b"></a>
|
||||
<a id="orgbf5f22b"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}}
|
||||
|
||||
|
@@ -12,11 +12,11 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Higham 2017](#org68f863c))
|
||||
- ([Attaway 2018](#org3441bfb))
|
||||
- ([OverFlow 2018](#org8e0ff2b))
|
||||
- ([Johnson 2010](#org019531d))
|
||||
- ([Hahn and Valentine 2016](#orgbeacac3))
|
||||
- ([Higham 2017](#org28e00d3))
|
||||
- ([Attaway 2018](#org46f9de5))
|
||||
- ([OverFlow 2018](#orgfac8ed6))
|
||||
- ([Johnson 2010](#org9e4fa10))
|
||||
- ([Hahn and Valentine 2016](#org56f31fb))
|
||||
|
||||
|
||||
## Useful Commands {#useful-commands}
|
||||
@@ -108,12 +108,12 @@ Nice functions:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org3441bfb"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
<a id="org46f9de5"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
|
||||
<a id="orgbeacac3"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
<a id="org56f31fb"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
|
||||
<a id="org68f863c"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
<a id="org28e00d3"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
|
||||
<a id="org019531d"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
<a id="org9e4fa10"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
|
||||
<a id="org8e0ff2b"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
<a id="orgfac8ed6"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
|
@@ -4,11 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Advanced motion control for precision mechatronics: control, identification, and learning of complex systems]({{< relref "oomen18_advan_motion_contr_precis_mechat" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -7,10 +7,10 @@ draft = false
|
||||
Tags
|
||||
: [Norms]({{< relref "norms" >}})
|
||||
|
||||
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org2f5ed44))
|
||||
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org94735a9))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2f5ed44"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="org94735a9"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
@@ -4,13 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution]({{< relref "wang12_autom_marker_full_field_hard" >}})
|
||||
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
|
||||
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -11,5 +11,3 @@ Tags
|
||||
## Resources {#resources}
|
||||
|
||||
- [Slotine Lectures on Nonlinear Systems](http://web.mit.edu/nsl/www/videos/lectures.html)
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -8,5 +8,3 @@ Tags
|
||||
:
|
||||
|
||||
Lecture about Nonlinear Systems at MIT ([link](http://web.mit.edu/nsl/www/videos/lectures.html)).
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -11,9 +11,9 @@ Tags
|
||||
|
||||
Resources:
|
||||
|
||||
- ([Skogestad and Postlethwaite 2007](#org4c8b20e))
|
||||
- ([Toivonen 2002](#org81db503))
|
||||
- ([Zhang 2011](#orgc4d2be1))
|
||||
- ([Skogestad and Postlethwaite 2007](#orga6846b3))
|
||||
- ([Toivonen 2002](#org300cd1c))
|
||||
- ([Zhang 2011](#org037ea69))
|
||||
|
||||
|
||||
## Definition {#definition}
|
||||
@@ -176,7 +176,7 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
|
||||
As explained in ([Monkhorst 2004](#orgc401feb)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in ([Monkhorst 2004](#org16354b5)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
@@ -184,10 +184,10 @@ As explained in ([Monkhorst 2004](#orgc401feb)), the \\(\mathcal{H}\_2\\) norm h
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgc401feb"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="org16354b5"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="org4c8b20e"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="orga6846b3"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="org81db503"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
<a id="org300cd1c"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
<a id="orgc4d2be1"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
<a id="org037ea69"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
|
@@ -32,7 +32,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org8e467ce)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orga50fca3)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@@ -56,14 +56,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5363d27)):
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orgc2229f2)):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6963733)).
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org661d95e)).
|
||||
|
||||
<a id="org050f47d"></a>
|
||||
<a id="org8c43728"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||
|
||||
@@ -155,43 +155,43 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org8857f21)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org538bacc)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="org8857f21"></a>
|
||||
<a id="org538bacc"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org35eead3)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8d008aa)).
|
||||
|
||||
<a id="org35eead3"></a>
|
||||
<a id="org8d008aa"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf00c960)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf006168)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="orgf00c960"></a>
|
||||
<a id="orgf006168"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orgb6392e0)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org4b9d568)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="orgb6392e0"></a>
|
||||
<a id="org4b9d568"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
@@ -201,10 +201,11 @@ When an external load is applied, the stiffness of the load (\\(k\_e\\)) determi
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier" >}}).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org5363d27"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
<a id="orgc2229f2"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="org8e467ce"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="orga50fca3"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org6963733"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
<a id="org661d95e"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
@@ -21,7 +21,7 @@ High precision positioning sensors include:
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org0cb5981)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgbadb097)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@@ -57,11 +57,12 @@ High precision positioning sensors include:
|
||||
|
||||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||||
|
||||
<a id="org12bd001"></a>
|
||||
<a id="org2b23cef"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="Figure 1: Overview of range and precision of different position displacement sensors. Taken from <sup id=\"53230532ada812541a7cd984b3aa2662\"><a href=\"#thurner15_fiber_based_distan_sensin_inter\" title=\"Thurner, Quacquarelli, Braun, Pierre-Fran\ccois, Dal Savio, Karrai \& Khaled, Fiber-Based Distance Sensing Interferometry, {Applied optics}, v(10), 3051--3063 (2015).\">thurner15_fiber_based_distan_sensin_inter</a></sup>" >}}
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org0cb5981"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<a id="orgbadb097"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
@@ -9,10 +9,10 @@ Tags
|
||||
|
||||
Tutorial about Power Spectral Density is accessible [here](https://research.tdehaeze.xyz/spectral-analysis/).
|
||||
|
||||
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org6fb2cbe)).
|
||||
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org7c6692c)).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6fb2cbe"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
|
||||
<a id="org7c6692c"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
|
||||
|
@@ -4,51 +4,43 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Here are my favorite books {#here-are-my-favorite-books}
|
||||
|
||||
([Steinbuch and Oomen 2016](#org662d0f5))
|
||||
([Taghirad 2013](#orgcce6317))
|
||||
([Lurie 2012](#org52a8951))
|
||||
([Skogestad and Postlethwaite 2007](#orgaf2a97d))
|
||||
([Schmidt, Schitter, and Rankers 2014](#org8465a79))
|
||||
([Preumont 2018](#org43a3abb))
|
||||
([Leach 2014](#org974f416))
|
||||
([Ewins 2000](#org89be7f5))
|
||||
([Leach and Smith 2018](#org7904c40))
|
||||
([Horowitz 2015](#orga618168))
|
||||
([Steinbuch and Oomen 2016](#orgf417be1))
|
||||
([Taghirad 2013](#org5d52649))
|
||||
([Lurie 2012](#org55fc1e1))
|
||||
([Skogestad and Postlethwaite 2007](#orgc1de88b))
|
||||
([Schmidt, Schitter, and Rankers 2014](#orgb0fd6be))
|
||||
([Preumont 2018](#orgf335f1e))
|
||||
([Leach 2014](#orgcac846b))
|
||||
([Ewins 2000](#orgff1b332))
|
||||
([Leach and Smith 2018](#orga27fe16))
|
||||
([Horowitz 2015](#orgf44e740))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org89be7f5"></a>Ewins, DJ. 2000. _Modal Testing: Theory, Practice and Application_. _Research Studies Pre, 2nd Ed., ISBN-13_. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.
|
||||
<a id="orgff1b332"></a>Ewins, DJ. 2000. _Modal Testing: Theory, Practice and Application_. _Research Studies Pre, 2nd Ed., ISBN-13_. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.
|
||||
|
||||
<a id="orga618168"></a>Horowitz, Paul. 2015. _The Art of Electronics - Third Edition_. New York, NY, USA: Cambridge University Press.
|
||||
<a id="orgf44e740"></a>Horowitz, Paul. 2015. _The Art of Electronics - Third Edition_. New York, NY, USA: Cambridge University Press.
|
||||
|
||||
<a id="org974f416"></a>Leach, Richard. 2014. _Fundamental Principles of Engineering Nanometrology_. Elsevier. <https://doi.org/10.1016/c2012-0-06010-3>.
|
||||
<a id="orgcac846b"></a>Leach, Richard. 2014. _Fundamental Principles of Engineering Nanometrology_. Elsevier. <https://doi.org/10.1016/c2012-0-06010-3>.
|
||||
|
||||
<a id="org7904c40"></a>Leach, Richard, and Stuart T. Smith. 2018. _Basics of Precision Engineering - 1st Edition_. CRC Press.
|
||||
<a id="orga27fe16"></a>Leach, Richard, and Stuart T. Smith. 2018. _Basics of Precision Engineering - 1st Edition_. CRC Press.
|
||||
|
||||
<a id="org52a8951"></a>Lurie, B. J. 2012. _Classical Feedback Control : with MATLAB and Simulink_. Boca Raton, FL: CRC Press.
|
||||
<a id="org55fc1e1"></a>Lurie, B. J. 2012. _Classical Feedback Control : with MATLAB and Simulink_. Boca Raton, FL: CRC Press.
|
||||
|
||||
<a id="org43a3abb"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="orgf335f1e"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org8465a79"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="orgb0fd6be"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
||||
<a id="orgaf2a97d"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="orgc1de88b"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="org662d0f5"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.
|
||||
<a id="orgf417be1"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.
|
||||
|
||||
<a id="orgcce6317"></a>Taghirad, Hamid. 2013. _Parallel Robots : Mechanics and Control_. Boca Raton, FL: CRC Press.
|
||||
<a id="org5d52649"></a>Taghirad, Hamid. 2013. _Parallel Robots : Mechanics and Control_. Boca Raton, FL: CRC Press.
|
||||
|
@@ -14,5 +14,3 @@ Tags
|
||||
|--------------------------------------------------------|---------|
|
||||
| [Huber](https://www.xhuber.com/en/) | Germany |
|
||||
| [LAB Motion System](http://www.leuvenairbearings.com/) | Belgium |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,16 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Nanopositioning with multiple sensors: a case study in data storage]({{< relref "sebastian12_nanop_with_multip_sensor" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
|
||||
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Actuator Fusion]({{< relref "actuator_fusion" >}}), [Complementary Filters]({{< relref "complementary_filters" >}}), [Sensors]({{< relref "sensors" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -12,13 +12,13 @@ Tags
|
||||
|
||||
Measuring the noise level of inertial sensors is not easy as the seismic motion is usually much larger than the sensor's noise level.
|
||||
|
||||
A technique to estimate the sensor noise in such case is proposed in ([Barzilai, VanZandt, and Kenny 1998](#org4702c9a)) and well explained in ([Poel 2010](#orgeaef46f)) (Section 6.1.3).
|
||||
A technique to estimate the sensor noise in such case is proposed in ([Barzilai, VanZandt, and Kenny 1998](#org65ed433)) and well explained in ([Poel 2010](#org02bd600)) (Section 6.1.3).
|
||||
|
||||
The idea is to mount two inertial sensors closely together such that they should measure the same quantity.
|
||||
|
||||
This is represented in Figure [1](#org030f5c0) where two identical sensors are measuring the same motion \\(x(t)\\).
|
||||
This is represented in Figure [1](#orgbc58a8d) where two identical sensors are measuring the same motion \\(x(t)\\).
|
||||
|
||||
<a id="org030f5c0"></a>
|
||||
<a id="orgbc58a8d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/huddle_test_setup.png" caption="Figure 1: Schematic representation of the setup for measuring the noise of inertial sensors." >}}
|
||||
|
||||
@@ -76,7 +76,7 @@ Now suppose that:
|
||||
- sensor noises are modelled as input noises \\(n\_1(t)\\) and \\(n\_2(s)\\)
|
||||
- sensor noises are uncorrelated and each are uncorrelated with \\(x(t)\\)
|
||||
|
||||
Then, the system can be represented by the block diagram in Figure [2](#orgec7c79b), and we can write:
|
||||
Then, the system can be represented by the block diagram in Figure [2](#org1dabfe7), and we can write:
|
||||
|
||||
\begin{align}
|
||||
P\_{y\_1y\_1}(\omega) &= |H\_1(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_1}(\omega) ) \\\\\\
|
||||
@@ -90,7 +90,7 @@ And the CSD between \\(y\_1(t)\\) and \\(y\_2(t)\\) is:
|
||||
\gamma^2\_{y\_1y\_2}(\omega) = \frac{|C\_{y\_1y\_2}(j\omega)|^2}{P\_{y\_1}(\omega) P\_{y\_2}(\omega)}
|
||||
\end{equation}
|
||||
|
||||
<a id="orgec7c79b"></a>
|
||||
<a id="org1dabfe7"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/huddle_test_block_diagram.png" caption="Figure 2: Huddle test block diagram" >}}
|
||||
|
||||
@@ -116,6 +116,6 @@ If we assume the two sensor dynamics to be the same \\(H\_1(s) \approx H\_2(s)\\
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org4702c9a"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” _Review of Scientific Instruments_ 69 (7):2767–72. <https://doi.org/10.1063/1.1149013>.
|
||||
<a id="org65ed433"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” _Review of Scientific Instruments_ 69 (7):2767–72. <https://doi.org/10.1063/1.1149013>.
|
||||
|
||||
<a id="orgeaef46f"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. <https://doi.org/10.3990/1.9789036530163>.
|
||||
<a id="org02bd600"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. <https://doi.org/10.3990/1.9789036530163>.
|
||||
|
@@ -19,5 +19,3 @@ Tags
|
||||
| [YMC](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
|
||||
| [Vibration Research](https://vibrationresearch.com/shakers/) | USA |
|
||||
| [Sentek Dynamics](https://www.sentekdynamics.com/) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## SNR to Noise PSD {#snr-to-noise-psd}
|
||||
|
||||
From ([Jabben 2007](#orgf2f4e47)) (Section 3.3.2):
|
||||
From ([Jabben 2007](#org55bd4a6)) (Section 3.3.2):
|
||||
|
||||
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
|
||||
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
|
||||
@@ -78,7 +78,7 @@ Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V
|
||||
|
||||
## Noise Density to RMS noise {#noise-density-to-rms-noise}
|
||||
|
||||
From ([Fleming 2010](#orgf17a758)):
|
||||
From ([Fleming 2010](#org65ccddc)):
|
||||
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
|
||||
|
||||
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
|
||||
@@ -96,8 +96,9 @@ The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgf17a758"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org65ccddc"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="orgf2f4e47"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
<a id="org55bd4a6"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## SVD of a MIMO system {#svd-of-a-mimo-system}
|
||||
|
||||
This is taken from ([Skogestad and Postlethwaite 2007](#orga80f5ed)).
|
||||
This is taken from ([Skogestad and Postlethwaite 2007](#org8e4f47e)).
|
||||
|
||||
We are interested by the physical interpretation of the SVD when applied to the frequency response of a MIMO system \\(G(s)\\) with \\(m\\) inputs and \\(l\\) outputs.
|
||||
|
||||
@@ -43,7 +43,7 @@ Then is follows that:
|
||||
|
||||
## SVD to pseudo inverse rectangular matrices {#svd-to-pseudo-inverse-rectangular-matrices}
|
||||
|
||||
This is taken from ([Preumont 2018](#orgb521567)).
|
||||
This is taken from ([Preumont 2018](#org6d4589f)).
|
||||
|
||||
The **Singular Value Decomposition** (SVD) is a generalization of the eigenvalue decomposition of a rectangular matrix:
|
||||
\\[ J = U \Sigma V^T = \sum\_{i=1}^r \sigma\_i u\_i v\_i^T \\]
|
||||
@@ -63,8 +63,9 @@ When \\(c(J)\\) becomes large, the most straightforward way to handle the ill-co
|
||||
This will have usually little impact of the fitting error while reducing considerably the actuator inputs \\(v\\).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgb521567"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="org6d4589f"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="orga80f5ed"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="org8e4f47e"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
@@ -13,5 +13,3 @@ Tags
|
||||
| Manufacturers | Country |
|
||||
|-----------------------------------|---------|
|
||||
| [Moflon](https://www.moflon.com/) | China |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
8
content/zettels/spillover_effect.md
Normal file
8
content/zettels/spillover_effect.md
Normal file
@@ -0,0 +1,8 @@
|
||||
+++
|
||||
title = "Spillover Effect"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
@@ -36,37 +36,37 @@ Tags
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#org413fc20))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgc5005e3))
|
||||
- ([McInroy 1999](#orgb4c311e))
|
||||
- ([McInroy and Hamann 2000](#org8285ab1))
|
||||
- ([Chen and McInroy 2000](#org709b3d5))
|
||||
- ([McInroy 2002](#org349aaf8))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgaa83268))
|
||||
- ([Lin and McInroy 2003](#org055e9ff))
|
||||
- ([Jafari and McInroy 2003](#org26e42d2))
|
||||
- ([Chen and McInroy 2004](#orgd92590e))
|
||||
- ([O’Brien et al. 1998](#orgf349082))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#org5767dd1))
|
||||
- ([McInroy 1999](#org2c21b8d))
|
||||
- ([McInroy and Hamann 2000](#org4297441))
|
||||
- ([Chen and McInroy 2000](#org8bb7a6a))
|
||||
- ([McInroy 2002](#org9b28444))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgf3f89be))
|
||||
- ([Lin and McInroy 2003](#org950f17b))
|
||||
- ([Jafari and McInroy 2003](#orge2968a9))
|
||||
- ([Chen and McInroy 2004](#org5ac50ad))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgd92590e"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
<a id="org5ac50ad"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="org709b3d5"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org8bb7a6a"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org26e42d2"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
<a id="orge2968a9"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="org055e9ff"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
<a id="org950f17b"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="orgaa83268"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
<a id="orgf3f89be"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="orgb4c311e"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
<a id="org2c21b8d"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="org349aaf8"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
<a id="org9b28444"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="org8285ab1"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
<a id="org4297441"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="orgc5005e3"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
<a id="org5767dd1"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="org413fc20"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
<a id="orgf349082"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
|
@@ -4,11 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
|
||||
Tags
|
||||
: [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -78,13 +78,13 @@ Sed aliquam
|
||||
|
||||
Here is a list of links to:
|
||||
|
||||
- Figure [3](#orgcbf9e46)
|
||||
- Figure [3](#org4ea4248)
|
||||
- Table [3](#table--tab:table-with-equations)
|
||||
- Listing [1](#code-snippet--lst:matlab-figure)
|
||||
- Specific line of code
|
||||
- Equation \eqref{eq:numbered}
|
||||
- Section
|
||||
- Bibliographic Reference ([Stanisic and Legrand 2014](#org0ed95e1)), and ([Schulte and Davison 2011](#org7b9fb79); [Dominik 2010](#org4f5b6d0); [Stanisic and Legrand 2014](#org0ed95e1))
|
||||
- Bibliographic Reference ([Stanisic and Legrand 2014](#org09d50a0)), and ([Schulte and Davison 2011](#org166e681); [Dominik 2010](#orge1088ab); [Stanisic and Legrand 2014](#org09d50a0))
|
||||
|
||||
|
||||
### Maths {#maths}
|
||||
@@ -157,7 +157,7 @@ Some text.
|
||||
|
||||
## Headlines {#headlines}
|
||||
|
||||
<a id="org94d8c54"></a>
|
||||
<a id="orgff62b8e"></a>
|
||||
|
||||
|
||||
### Second level Headline with tags {#second-level-headline-with-tags}
|
||||
@@ -304,7 +304,7 @@ Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean so
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
```
|
||||
|
||||
<a id="org75ab154"></a>
|
||||
<a id="org5984071"></a>
|
||||
|
||||
{{< figure src="figs/matlab_fig_example.png" caption="Figure 1: Matlab Figure" >}}
|
||||
|
||||
@@ -375,7 +375,7 @@ Moreover, we can link to specific bode blocks (Listing [1](#code-snippet--lst:ma
|
||||
Code to produce a nice contour plot
|
||||
</div>
|
||||
|
||||
<a id="orgfcd383d"></a>
|
||||
<a id="org1543d5a"></a>
|
||||
|
||||
{{< figure src="figs/matlab_logo.png" caption="Figure 2: Obtained Contour Plot" >}}
|
||||
|
||||
@@ -450,7 +450,7 @@ Numbering can be continued by using `+n` option as shown below.
|
||||
|
||||
### Normal Image {#normal-image}
|
||||
|
||||
Figure [3](#orgcbf9e46) shows the results of the Tikz code of listing [4](#code-snippet--lst:tikz-test).
|
||||
Figure [3](#org4ea4248) shows the results of the Tikz code of listing [4](#code-snippet--lst:tikz-test).
|
||||
|
||||
<a id="code-snippet--lst:tikz-test"></a>
|
||||
```latex
|
||||
@@ -477,10 +477,10 @@ Figure [3](#orgcbf9e46) shows the results of the Tikz code of listing [4](#code-
|
||||
|
||||
<div class="src-block-caption">
|
||||
<span class="src-block-number"><a href="#code-snippet--lst:tikz-test">Code Snippet 4</a></span>:
|
||||
Tikz code that is used to generate Figure <a href="#orgcbf9e46">3</a>
|
||||
Tikz code that is used to generate Figure <a href="#org4ea4248">3</a>
|
||||
</div>
|
||||
|
||||
<a id="orgcbf9e46"></a>
|
||||
<a id="org4ea4248"></a>
|
||||
|
||||
{{< figure src="figs/general_control_names.png" caption="Figure 3: General Control Configuration" >}}
|
||||
|
||||
@@ -493,7 +493,7 @@ Figure [3](#orgcbf9e46) shows the results of the Tikz code of listing [4](#code-
|
||||
|
||||
### Wrap Image {#wrap-image}
|
||||
|
||||
<a id="orge97a9ba"></a>
|
||||
<a id="orgf642771"></a>
|
||||
|
||||
{{< figure src="figs/general_control_names.png" caption="Figure 4: General Control Configuration" >}}
|
||||
|
||||
@@ -509,7 +509,7 @@ Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae moles
|
||||
[[file:figs/general_control_names.png]]
|
||||
```
|
||||
|
||||
<a id="org669836c"></a>
|
||||
<a id="orgf69ab28"></a>
|
||||
|
||||
{{< figure src="figs/general_control_names.png" caption="Figure 5: General Control Configuration" >}}
|
||||
|
||||
@@ -518,7 +518,7 @@ Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae moles
|
||||
|
||||
### Sub Images {#sub-images}
|
||||
|
||||
Link to subfigure [2](#org0dc182a).
|
||||
Link to subfigure [2](#org8a50ede).
|
||||
|
||||
```md
|
||||
#+name: fig:subfigure
|
||||
@@ -536,7 +536,7 @@ Link to subfigure [2](#org0dc182a).
|
||||
|
||||
|  |  |
|
||||
|--------------------------------------------|--------------------------------------------|
|
||||
| <a id="org0dc182a"></a> sub figure caption | <a id="org5fce826"></a> sub figure caption |
|
||||
| <a id="org8a50ede"></a> sub figure caption | <a id="org65296f2"></a> sub figure caption |
|
||||
|
||||
|
||||
## Tables {#tables}
|
||||
@@ -647,11 +647,11 @@ It is approximately **12,742 km**
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org4f5b6d0"></a>Dominik, Carsten. 2010. _The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs_. Network Theory Ltd.
|
||||
<a id="orge1088ab"></a>Dominik, Carsten. 2010. _The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs_. Network Theory Ltd.
|
||||
|
||||
<a id="org7b9fb79"></a>Schulte, Eric, and Dan Davison. 2011. “Active Documents with Org-Mode.” _Computing in Science & Engineering_ 13 (3). IEEE Computer Society:66–73.
|
||||
<a id="org166e681"></a>Schulte, Eric, and Dan Davison. 2011. “Active Documents with Org-Mode.” _Computing in Science & Engineering_ 13 (3). IEEE Computer Society:66–73.
|
||||
|
||||
<a id="org0ed95e1"></a>Stanisic, Luka, and Arnaud Legrand. 2014. “Effective Reproducible Research with Org-Mode and Git.” In _European Conference on Parallel Processing_, 475–86. Springer.
|
||||
<a id="org09d50a0"></a>Stanisic, Luka, and Arnaud Legrand. 2014. “Effective Reproducible Research with Org-Mode and Git.” In _European Conference on Parallel Processing_, 475–86. Springer.
|
||||
|
||||
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to Figure [3](#orgcbf9e46).
|
||||
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to Figure [3](#org4ea4248).
|
||||
[^fn:2]: An other footnote.
|
||||
|
@@ -19,5 +19,3 @@ Tags
|
||||
| [Hamamatsu](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
|
||||
| [Maradin](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
|
||||
| [Opus](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -23,5 +23,3 @@ It is generally used to interface a sensor which outputs a current proportional
|
||||
| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
| [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||
| [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,31 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Element and system design for active and passive vibration isolation]({{< relref "zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" >}})
|
||||
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
|
||||
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
|
||||
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
|
||||
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
|
||||
- [A soft 6-axis active vibration isolator]({{< relref "spanos95_soft_activ_vibrat_isolat" >}})
|
||||
- [Six dof active vibration control using stewart platform with non-cubic configuration]({{< relref "zhang11_six_dof" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
|
||||
- [Review of active vibration isolation strategies]({{< relref "collette11_review_activ_vibrat_isolat_strat" >}})
|
||||
- [Force feedback versus acceleration feedback in active vibration isolation]({{< relref "preumont02_force_feedb_versus_accel_feedb" >}})
|
||||
- [Active Isolation Platforms]({{< relref "active_isolation_platforms" >}})
|
||||
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
- [An exploration of active hard mount vibration isolation for precision equipment]({{< relref "poel10_explor_activ_hard_mount_vibrat" >}})
|
||||
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,11 +4,5 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -16,7 +16,7 @@ Tags
|
||||
|
||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||
|
||||
([Schmidt, Schitter, and Rankers 2014](#org8334379))
|
||||
([Schmidt, Schitter, and Rankers 2014](#orgc4c6d58))
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
@@ -40,6 +40,7 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
|
||||
| [Monticont](http://www.moticont.com/) | USA |
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org8334379"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="orgc4c6d58"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
@@ -33,9 +33,9 @@ Tags
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org811725e)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org14569de)).
|
||||
|
||||
<a id="org811725e"></a>
|
||||
<a id="org14569de"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
@@ -55,7 +55,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org8c7858f).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#orga5b5a57).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@@ -69,7 +69,7 @@ The maximum voltage as a function of frequency is shown in Figure [2](#org8c7858
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="org8c7858f"></a>
|
||||
<a id="orga5b5a57"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
@@ -105,7 +105,7 @@ This can pose several problems:
|
||||
|
||||
### Noise {#noise}
|
||||
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2123c0f)).
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org8deb271)).
|
||||
|
||||
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
||||
|
||||
@@ -117,13 +117,14 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
|
||||
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
||||
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
||||
|
||||
This is discussed in ([Spengen 2017](#orgc500938)).
|
||||
This is discussed in ([Spengen 2017](#org22b2168)).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org66151a2"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
<a id="org6dde1c6"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
||||
<a id="orgc500938"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
<a id="org22b2168"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
|
||||
<a id="org2123c0f"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
<a id="org8deb271"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
|
Reference in New Issue
Block a user