bibliography: => #+BIBLIOGRAPHY: here
This commit is contained in:
@@ -161,21 +161,21 @@ Three factors influence the performance:
|
||||
The DEB helps identifying which disturbance is the limiting factor, and it should be investigated if the controller can deal with this disturbance before re-designing the plant.
|
||||
|
||||
The modelling of disturbance as stochastic variables, is by excellence suitable for the optimal stochastic control framework.
|
||||
In Figure [1](#org7b34df5), the generalized plant maps the disturbances to the performance channels.
|
||||
In Figure [1](#orgbf22b5e), the generalized plant maps the disturbances to the performance channels.
|
||||
By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the variance of the performance channels is minimized.
|
||||
|
||||
<a id="org7b34df5"></a>
|
||||
<a id="orgbf22b5e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/jabben07_general_plant.png" caption="Figure 1: Control system with the generalized plant \\(G\\). The performance channels are stacked in \\(z\\), while the controller input is denoted with \\(y\\)" >}}
|
||||
|
||||
|
||||
#### Using Weighting Filters for Disturbance Modelling {#using-weighting-filters-for-disturbance-modelling}
|
||||
|
||||
Since disturbances are generally not white, the system of Figure [1](#org7b34df5) needs to be augmented with so called **disturbance weighting filters**.
|
||||
Since disturbances are generally not white, the system of Figure [1](#orgbf22b5e) needs to be augmented with so called **disturbance weighting filters**.
|
||||
|
||||
A disturbance weighting filter gives the disturbance PSD when white noise as input is applied.
|
||||
|
||||
This is illustrated in Figure [2](#org5013433) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
|
||||
This is illustrated in Figure [2](#org27e9aeb) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
|
||||
|
||||
The generalized plant framework also allows to include **weighting filters for the performance channels**.
|
||||
This is useful for three reasons:
|
||||
@@ -184,7 +184,7 @@ This is useful for three reasons:
|
||||
- some performance channels may be of more importance than others
|
||||
- by using dynamic weighting filters, one can emphasize the performance in a certain frequency range
|
||||
|
||||
<a id="org5013433"></a>
|
||||
<a id="org27e9aeb"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/jabben07_weighting_functions.png" caption="Figure 2: Control system with the generalized plant \\(G\\) and weighting functions" >}}
|
||||
|
||||
@@ -209,9 +209,9 @@ So, to obtain feasible controllers, the performance channel is a combination of
|
||||
By choosing suitable weighting filters for \\(y\\) and \\(u\\), the performance can be optimized while keeping the controller effort limited:
|
||||
\\[ \\|z\\|\_{rms}^2 = \left\\| \begin{bmatrix} y \\ \alpha u \end{bmatrix} \right\\|\_{rms}^2 = \\|y\\|\_{rms}^2 + \alpha^2 \\|u\\|\_{rms}^2 \\]
|
||||
|
||||
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#org47370f3) is obtained.
|
||||
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#org5ae58f0) is obtained.
|
||||
|
||||
<a id="org47370f3"></a>
|
||||
<a id="org5ae58f0"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/jabben07_pareto_curve_H2.png" caption="Figure 3: An illustration of a Pareto curve. Each point of the curve represents the performance obtained with an optimal controller. The curve is obtained by varying \\(\alpha\\) and calculating an \\(\mathcal{H}\_2\\) optimal controller for each \\(\alpha\\)." >}}
|
||||
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}})
|
||||
|
||||
Reference
|
||||
: ([Monkhorst 2004](#org5371372))
|
||||
: ([Monkhorst 2004](#org7671be3))
|
||||
|
||||
Author(s)
|
||||
: Monkhorst, W.
|
||||
@@ -95,9 +95,9 @@ Find a controller \\(C\_{\mathcal{H}\_2}\\) which minimizes the \\(\mathcal{H}\_
|
||||
|
||||
In order to synthesize an \\(\mathcal{H}\_2\\) controller that will minimize the output error, the total system including disturbances needs to be modeled as a system with zero mean white noise inputs.
|
||||
|
||||
This is done by using weighting filter \\(V\_w\\), of which the output signal has a PSD \\(S\_w(f)\\) when the input is zero mean white noise (Figure [1](#orgbc6c1df)).
|
||||
This is done by using weighting filter \\(V\_w\\), of which the output signal has a PSD \\(S\_w(f)\\) when the input is zero mean white noise (Figure [1](#org16f42a7)).
|
||||
|
||||
<a id="orgbc6c1df"></a>
|
||||
<a id="org16f42a7"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/monkhorst04_weighting_filter.png" caption="Figure 1: The use of a weighting filter \\(V\_w(f)\,[SI]\\) to give the weighted signal \\(\bar{w}(t)\\) a certain PSD \\(S\_w(f)\\)." >}}
|
||||
|
||||
@@ -108,23 +108,23 @@ The PSD \\(S\_w(f)\\) of the weighted signal is:
|
||||
Given \\(S\_w(f)\\), \\(V\_w(f)\\) can be obtained using a technique called _spectral factorization_.
|
||||
However, this can be avoided if the modelling of the disturbances is directly done in terms of weighting filters.
|
||||
|
||||
Output weighting filters can also be used to scale different outputs relative to each other (Figure [2](#org5bbc30c)).
|
||||
Output weighting filters can also be used to scale different outputs relative to each other (Figure [2](#orgc49109b)).
|
||||
|
||||
<a id="org5bbc30c"></a>
|
||||
<a id="orgc49109b"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/monkhorst04_general_weighted_plant.png" caption="Figure 2: The open loop system \\(\bar{G}\\) in series with the diagonal input weightin filter \\(V\_w\\) and diagonal output scaling iflter \\(W\_z\\) defining the generalized plant \\(G\\)" >}}
|
||||
|
||||
|
||||
#### Output scaling and the Pareto curve {#output-scaling-and-the-pareto-curve}
|
||||
|
||||
In this research, the outputs of the closed loop system (Figure [3](#orgff3035c)) are:
|
||||
In this research, the outputs of the closed loop system (Figure [3](#org8b8bb94)) are:
|
||||
|
||||
- the performance (error) signal \\(e\\)
|
||||
- the controller output \\(u\\)
|
||||
|
||||
In this way, the designer can analyze how much control effort is used to achieve the performance level at the performance output.
|
||||
|
||||
<a id="orgff3035c"></a>
|
||||
<a id="org8b8bb94"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/monkhorst04_closed_loop_H2.png" caption="Figure 3: The closed loop system with weighting filters included. The system has \\(n\\) disturbance inputs and two outputs: the error \\(e\\) and the control signal \\(u\\). The \\(\mathcal{H}\_2\\) minimized the \\(\mathcal{H}\_2\\) norm of this system." >}}
|
||||
|
||||
@@ -151,4 +151,4 @@ Drawbacks however are, that no robustness guarantees can be given and that the o
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org5371372"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="org7671be3"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
Reference in New Issue
Block a user