bibliography: => #+BIBLIOGRAPHY: here

This commit is contained in:
2021-05-02 22:18:30 +02:00
parent a79f30c4d8
commit dfdbe99a8d
127 changed files with 1076 additions and 1162 deletions

View File

@@ -9,7 +9,7 @@ Tags
Reference
: ([Fleming and Leang 2014](#org53722bc))
: ([Fleming and Leang 2014](#org6bfb955))
Author(s)
: Fleming, A. J., & Leang, K. K.
@@ -821,11 +821,11 @@ Year
### Amplifier and Piezo electrical models {#amplifier-and-piezo-electrical-models}
<a id="orgaaa53eb"></a>
<a id="org1aabb30"></a>
{{< figure src="/ox-hugo/fleming14_amplifier_model.png" caption="Figure 1: A voltage source \\(V\_s\\) driving a piezoelectric load. The actuator is modeled by a capacitance \\(C\_p\\) and strain-dependent voltage source \\(V\_p\\). The resistance \\(R\_s\\) is the output impedance and \\(L\\) the cable inductance." >}}
Consider the electrical circuit shown in Figure [1](#orgaaa53eb) where a voltage source is connected to a piezoelectric actuator.
Consider the electrical circuit shown in Figure [1](#org1aabb30) where a voltage source is connected to a piezoelectric actuator.
The actuator is modeled as a capacitance \\(C\_p\\) in series with a strain-dependent voltage source \\(V\_p\\).
The resistance \\(R\_s\\) and inductance \\(L\\) are the source impedance and the cable inductance respectively.
@@ -946,6 +946,7 @@ The bandwidth limitations of standard piezoelectric drives were identified as:
### References {#references}
## Bibliography {#bibliography}
<a id="org53722bc"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
<a id="org6bfb955"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.