Update Content - 2020-09-08
This commit is contained in:
parent
b542b0b0a8
commit
ca062b8b75
20
content/zettels/current_amplifier.md
Normal file
20
content/zettels/current_amplifier.md
Normal file
@ -0,0 +1,20 @@
|
||||
+++
|
||||
title = "Current Amplifier"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
|
||||
|
||||
## Current Amplifier to drive Inductive Loads {#current-amplifier-to-drive-inductive-loads}
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|-------|---------|
|
||||
| | | |
|
||||
|
||||
<./biblio/references.bib>
|
@ -12,7 +12,7 @@ Tags
|
||||
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
|
||||
## Voltage Amplifiers to drive Capacitive Load {#voltage-amplifiers-to-drive-capacitive-load}
|
||||
## Voltage Amplifiers to drive Capacitive Loads {#voltage-amplifiers-to-drive-capacitive-loads}
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
@ -20,11 +20,11 @@ Tags
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|
||||
| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
||||
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
|
||||
| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
||||
| Micromega Dynamics | | Belgium |
|
||||
| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
|
||||
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
|
||||
| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany |
|
||||
| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
|
||||
| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
|
||||
@ -38,9 +38,9 @@ Tags
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgf2b344c)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org4297943)).
|
||||
|
||||
<a id="orgf2b344c"></a>
|
||||
<a id="org4297943"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
@ -60,7 +60,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org1190638).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#orgb578cd2).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@ -74,7 +74,7 @@ C = 1e-6; % [F]
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="org1190638"></a>
|
||||
<a id="orgb578cd2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
@ -88,7 +88,7 @@ If driven at \\(\Delta U = 100V\\), \\(C = 1 \mu F\\) and \\(I\_\text{max} = 1 A
|
||||
|
||||
### Bandwidth limitation (small signals) {#bandwidth-limitation--small-signals}
|
||||
|
||||
This is takken from Chapter 14 of ([Fleming and Leang 2014](#org2e80fee)).
|
||||
This is takken from Chapter 14 of ([Fleming and Leang 2014](#orgd3659c0)).
|
||||
|
||||
```matlab
|
||||
L = 250e-9; % Cable inductance [H]
|
||||
@ -112,6 +112,15 @@ Specifications are usually:
|
||||
The bandwidth can be estimated from the Maximum Current and the Capacitance of the Piezoelectric Actuator.
|
||||
|
||||
|
||||
### Problem to drive highly capacitive loads {#problem-to-drive-highly-capacitive-loads}
|
||||
|
||||
At high frequency, the impedance of the capacitive load is very small.
|
||||
This can pose several problems:
|
||||
|
||||
- the current to be supplied by the amplifier to have some voltage becomes very large
|
||||
- the internal impedance of the amplifier may be large compared to the load impedance, and thus large voltage drop will occur
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2e80fee"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
<a id="orgd3659c0"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
Loading…
Reference in New Issue
Block a user