Update Content - 2020-09-08

This commit is contained in:
Thomas Dehaeze 2020-09-08 16:00:29 +02:00
parent b542b0b0a8
commit ca062b8b75
2 changed files with 38 additions and 9 deletions

View File

@ -0,0 +1,20 @@
+++
title = "Current Amplifier"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
## Current Amplifier to drive Inductive Loads {#current-amplifier-to-drive-inductive-loads}
### Manufacturers {#manufacturers}
| Manufacturers | Links | Country |
|---------------|-------|---------|
| | | |
<./biblio/references.bib>

View File

@ -12,7 +12,7 @@ Tags
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}}) : [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
## Voltage Amplifiers to drive Capacitive Load {#voltage-amplifiers-to-drive-capacitive-load} ## Voltage Amplifiers to drive Capacitive Loads {#voltage-amplifiers-to-drive-capacitive-loads}
### Manufacturers {#manufacturers} ### Manufacturers {#manufacturers}
@ -20,11 +20,11 @@ Tags
| Manufacturers | Links | Country | | Manufacturers | Links | Country |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia | | Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia |
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA | | Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA | | PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
| Micromega Dynamics | | Belgium | | Micromega Dynamics | | Belgium |
| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal | | Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany | | Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany |
| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France | | Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA | | Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
@ -38,9 +38,9 @@ Tags
The piezoelectric stack can be represented as a capacitance. The piezoelectric stack can be represented as a capacitance.
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgf2b344c)). Let's take a capacitance driven by a voltage amplifier (Figure [1](#org4297943)).
<a id="orgf2b344c"></a> <a id="org4297943"></a>
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}} {{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
@ -60,7 +60,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency: - Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\] \\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
The maximum voltage as a function of frequency is shown in Figure [2](#org1190638). The maximum voltage as a function of frequency is shown in Figure [2](#orgb578cd2).
```matlab ```matlab
Vpkp = 170; % [V] Vpkp = 170; % [V]
@ -74,7 +74,7 @@ C = 1e-6; % [F]
56.172 56.172
``` ```
<a id="org1190638"></a> <a id="orgb578cd2"></a>
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}} {{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
@ -88,7 +88,7 @@ If driven at \\(\Delta U = 100V\\), \\(C = 1 \mu F\\) and \\(I\_\text{max} = 1 A
### Bandwidth limitation (small signals) {#bandwidth-limitation--small-signals} ### Bandwidth limitation (small signals) {#bandwidth-limitation--small-signals}
This is takken from Chapter 14 of ([Fleming and Leang 2014](#org2e80fee)). This is takken from Chapter 14 of ([Fleming and Leang 2014](#orgd3659c0)).
```matlab ```matlab
L = 250e-9; % Cable inductance [H] L = 250e-9; % Cable inductance [H]
@ -112,6 +112,15 @@ Specifications are usually:
The bandwidth can be estimated from the Maximum Current and the Capacitance of the Piezoelectric Actuator. The bandwidth can be estimated from the Maximum Current and the Capacitance of the Piezoelectric Actuator.
### Problem to drive highly capacitive loads {#problem-to-drive-highly-capacitive-loads}
At high frequency, the impedance of the capacitive load is very small.
This can pose several problems:
- the current to be supplied by the amplifier to have some voltage becomes very large
- the internal impedance of the amplifier may be large compared to the load impedance, and thus large voltage drop will occur
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="org2e80fee"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>. <a id="orgd3659c0"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.