Update few notes

This commit is contained in:
2020-04-29 14:36:36 +02:00
parent 8633c0c130
commit c4c19e5f99
16 changed files with 303 additions and 146 deletions

View File

@@ -17,13 +17,37 @@ Tags
## Relative Position Sensors {#relative-position-sensors}
<a id="orgf9f8137"></a>
<a id="table--tab:characteristics-relative-sensor"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a></span>:
Characteristics of relative measurement sensors <a class='org-ref-reference' href="#collette11_review">collette11_review</a>
</div>
{{< figure src="/ox-hugo/position_sensor_characteristics_relative_sensor.png" caption="Figure 1: Characteristics of relative measurement sensors <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, cern, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
| Technology | Frequency (Hz) | Resolution [nm rms] | Range | Temperature Range [\\(^o \degree C\\)] |
|----------------|----------------------------|---------------------|--------------------------|----------------------------------------|
| LVDT | \\(\text{DC}-200\,[Hz]\\) | 10 | \\(1-10\,[mm]\\) | -50,100 |
| Eddy current | \\(5\,[kHz]\\) | 0.1-100 | \\(0.5-55\,[mm]\\) | -50,100 |
| Capacitive | \\(\text{DC}-100\,[kHz]\\) | 0.05-50 | \\(50\,[nm] - 1\,[cm]\\) | -40,100 |
| Interferometer | \\(300\,[kHz]\\) | 0.1 | \\(10\,[cm]\\) | -250,100 |
| Encoder | \\(\text{DC}-1\,[MHz]\\) | 1 | \\(7-27\,[mm]\\) | 0,40 |
| Bragg Fibers | \\(\text{DC}-150\,[Hz]\\) | 0.3 | \\(3.5\,[cm]\\) | -30,80 |
<a id="org4ac51f1"></a>
<a id="table--tab:summary-position-sensors"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100\,\mu m\) and a first order bandwidth of \(1\,kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a> (<a href="fleming13_review_nanom_resol_posit_sensor.html">notes</a>)
</div>
{{< figure src="/ox-hugo/position_sensor_characteristics.png" caption="Figure 2: Position sensor characteristics <sup id=\"3fb5b61524290e36d639a4fac65703d0\"><a href=\"#fleming13_review_nanom_resol_posit_sensor\" title=\"Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).\">(Andrew Fleming, 2013)</a></sup>" >}}
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|----------------|----------------------------------|---------|------------|----------|-----------|
| Metal foil | \\(10-500\,\mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
| Piezoresistive | \\(1-500\,\mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
| Capacitive | \\(10\,\mu m\\) to \\(10\,mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
| Electrothermal | \\(10\,\mu m\\) to \\(1\,mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
| Eddy current | \\(100\,\mu m\\) to \\(80\,mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
| LVDT | \\(0.5-500\,mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
### Strain Gauge {#strain-gauge}
@@ -74,7 +98,7 @@ Description:
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) |
<div class="table-caption">
<span class="table-number">Table 1</span>:
<span class="table-number">Table 3</span>:
Characteristics of Environmental Units
</div>
@@ -84,13 +108,13 @@ Description:
| Renishaw | 0.2 | 1 | 6 | 1 |
| Picoscale | 0.2 | 2 | 2 | 1 |
Figure [3](#orgce716a4) is taken from
Figure [1](#org1c8180d) is taken from
<sup id="7658b1219a4458a62ae8c6f51b767542"><a href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \&amp; Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
Manufacturing}, v(12), 1881-1890 (2017).">(Yoon-Soo Jang \& Seung-Woo Kim, 2017)</a></sup>.
<a id="orgce716a4"></a>
<a id="org1c8180d"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 3: Expected precision of interferometer as a function of measured distance" >}}
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
### Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor}
@@ -111,5 +135,5 @@ Figure [3](#orgce716a4) is taken from
## Backlinks {#backlinks}
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})