Update few notes
This commit is contained in:
25
content/zettels/hac_hac.md
Normal file
25
content/zettels/hac_hac.md
Normal file
@@ -0,0 +1,25 @@
|
||||
+++
|
||||
title = "HAC-HAC"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
High-Authority Control/Low-Authority Control
|
||||
|
||||
From <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
|
||||
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org2e37874). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
>
|
||||
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
|
||||
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
|
||||
> - The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)
|
||||
|
||||
<a id="org2e37874"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="Figure 1: HAC-LAC Control Architecture" >}}
|
||||
|
||||
# Bibliography
|
||||
<a id="preumont18_vibrat_contr_activ_struc_fourt_edition"></a>Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing. [↩](#454500a3af67ef66a7a754d1f2e1bd4a)
|
@@ -12,8 +12,8 @@ Tags
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
- [Multivariable control systems: an engineering approach]({{< relref "albertos04_multiv_contr_system" >}})
|
||||
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
|
||||
- [Implementation challenges for multivariable control: what you did not learn in school!]({{< relref "garg07_implem_chall_multiv_contr" >}})
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Multivariable control systems: an engineering approach]({{< relref "albertos04_multiv_contr_system" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
|
@@ -17,13 +17,37 @@ Tags
|
||||
|
||||
## Relative Position Sensors {#relative-position-sensors}
|
||||
|
||||
<a id="orgf9f8137"></a>
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a></span>:
|
||||
Characteristics of relative measurement sensors <a class='org-ref-reference' href="#collette11_review">collette11_review</a>
|
||||
</div>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_characteristics_relative_sensor.png" caption="Figure 1: Characteristics of relative measurement sensors <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, cern, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
| Technology | Frequency (Hz) | Resolution [nm rms] | Range | Temperature Range [\\(^o \degree C\\)] |
|
||||
|----------------|----------------------------|---------------------|--------------------------|----------------------------------------|
|
||||
| LVDT | \\(\text{DC}-200\,[Hz]\\) | 10 | \\(1-10\,[mm]\\) | -50,100 |
|
||||
| Eddy current | \\(5\,[kHz]\\) | 0.1-100 | \\(0.5-55\,[mm]\\) | -50,100 |
|
||||
| Capacitive | \\(\text{DC}-100\,[kHz]\\) | 0.05-50 | \\(50\,[nm] - 1\,[cm]\\) | -40,100 |
|
||||
| Interferometer | \\(300\,[kHz]\\) | 0.1 | \\(10\,[cm]\\) | -250,100 |
|
||||
| Encoder | \\(\text{DC}-1\,[MHz]\\) | 1 | \\(7-27\,[mm]\\) | 0,40 |
|
||||
| Bragg Fibers | \\(\text{DC}-150\,[Hz]\\) | 0.3 | \\(3.5\,[cm]\\) | -30,80 |
|
||||
|
||||
<a id="org4ac51f1"></a>
|
||||
<a id="table--tab:summary-position-sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100\,\mu m\) and a first order bandwidth of \(1\,kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a> (<a href="fleming13_review_nanom_resol_posit_sensor.html">notes</a>)
|
||||
</div>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_characteristics.png" caption="Figure 2: Position sensor characteristics <sup id=\"3fb5b61524290e36d639a4fac65703d0\"><a href=\"#fleming13_review_nanom_resol_posit_sensor\" title=\"Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).\">(Andrew Fleming, 2013)</a></sup>" >}}
|
||||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||||
|----------------|----------------------------------|---------|------------|----------|-----------|
|
||||
| Metal foil | \\(10-500\,\mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
|
||||
| Piezoresistive | \\(1-500\,\mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
|
||||
| Capacitive | \\(10\,\mu m\\) to \\(10\,mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
|
||||
| Electrothermal | \\(10\,\mu m\\) to \\(1\,mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
|
||||
| Eddy current | \\(100\,\mu m\\) to \\(80\,mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
|
||||
| LVDT | \\(0.5-500\,mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
|
||||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
|
||||
|
||||
### Strain Gauge {#strain-gauge}
|
||||
@@ -74,7 +98,7 @@ Description:
|
||||
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) |
|
||||
|
||||
<div class="table-caption">
|
||||
<span class="table-number">Table 1</span>:
|
||||
<span class="table-number">Table 3</span>:
|
||||
Characteristics of Environmental Units
|
||||
</div>
|
||||
|
||||
@@ -84,13 +108,13 @@ Description:
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
Figure [3](#orgce716a4) is taken from
|
||||
Figure [1](#org1c8180d) is taken from
|
||||
<sup id="7658b1219a4458a62ae8c6f51b767542"><a href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \& Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
|
||||
Manufacturing}, v(12), 1881-1890 (2017).">(Yoon-Soo Jang \& Seung-Woo Kim, 2017)</a></sup>.
|
||||
|
||||
<a id="orgce716a4"></a>
|
||||
<a id="org1c8180d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 3: Expected precision of interferometer as a function of measured distance" >}}
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
### Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor}
|
||||
@@ -111,5 +135,5 @@ Figure [3](#orgce716a4) is taken from
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
|
@@ -12,9 +12,9 @@ Tags
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
|
Reference in New Issue
Block a user