Update Content - 2020-12-10
This commit is contained in:
parent
117f343c37
commit
86eb3b2a13
36
content/zettels/fractional_order_transfer_functions.md
Normal file
36
content/zettels/fractional_order_transfer_functions.md
Normal file
@ -0,0 +1,36 @@
|
||||
+++
|
||||
title = "Fractional Order Transfer Functions"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Example Using the FOMCON toolbox {#example-using-the-fomcon-toolbox}
|
||||
|
||||
The documentation for the toolbox is accessible [here](https://fomcon.net/fomcon-toolbox/overview/).
|
||||
|
||||
Here are the parameters that are used to define the wanted properties of the fractional model:
|
||||
|
||||
```matlab
|
||||
wb = 2*pi*0.1; % Lowest frequency bound
|
||||
wh = 2*pi*1e3; % Highest frequency bound
|
||||
n = 8; % Approximation order
|
||||
r = 0.5; % Wanted slope, The corresponding phase will be pi*r
|
||||
```
|
||||
|
||||
Then, to create an approximation of a fractional-order operator \\(s^r\\) of order \\(n\\) which is valid in the frequency range \\([\omega\_b\, \omega\_h]\\), the `oustafod` function can be used:
|
||||
|
||||
```matlab
|
||||
G = oustafod(r,n,wb,wh);
|
||||
```
|
||||
|
||||
Few examples of different slopes are shown in Figure [1](#orgb7e7209).
|
||||
|
||||
<a id="orgb7e7209"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/approximate_deriv_int.png" caption="Figure 1: Example of fractional approximations" >}}
|
||||
|
||||
<./biblio/references.bib>
|
BIN
static/ox-hugo/approximate_deriv_int.png
Normal file
BIN
static/ox-hugo/approximate_deriv_int.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 170 KiB |
Loading…
Reference in New Issue
Block a user