Update Content - 2022-03-17

This commit is contained in:
2022-03-17 09:21:26 +01:00
parent 22fb3361a5
commit 67031393b7
39 changed files with 3246 additions and 149 deletions

View File

@@ -5,10 +5,10 @@ draft = true
+++
Tags
: [IRR and FIR Filters]({{<relref "irr_and_fir_filters.md#" >}}), [Digital Filters]({{<relref "digital_filters.md#" >}})
: [IRR and FIR Filters]({{< relref "irr_and_fir_filters.md" >}}), [Digital Filters]({{< relref "digital_filters.md" >}})
Reference
: <lyons11_under_digit_signal_proces>
: (<a href="#citeproc_bib_item_1">Lyons 2011</a>)
Author(s)
: Lyons, R.
@@ -43,13 +43,13 @@ Year
### Analyzing Linear Time-Invariant Systems {#analyzing-linear-time-invariant-systems}
<a id="orgcbbc38b"></a>
<a id="figure--fig:lyons11-lti-impulse-response"></a>
{{< figure src="/ox-hugo/lyons11_lti_impulse_response.png" caption="Figure 1: LTI system unit impulse response sequences. (a) system block diagram. (b) impulse input sequence \\(x(n)\\) and impulse reponse output sequence \\(y(n)\\)." >}}
{{< figure src="/ox-hugo/lyons11_lti_impulse_response.png" caption="<span class=\"figure-number\">Figure 1: </span>LTI system unit impulse response sequences. (a) system block diagram. (b) impulse input sequence \\(x(n)\\) and impulse reponse output sequence \\(y(n)\\)." >}}
<a id="org50f1362"></a>
<a id="figure--fig:lyons11-moving-average"></a>
{{< figure src="/ox-hugo/lyons11_moving_average.png" caption="Figure 2: Analyzing a moving average filter. (a) averager block diagram; (b) impulse input and impulse response; (c) averager frequency magnitude reponse." >}}
{{< figure src="/ox-hugo/lyons11_moving_average.png" caption="<span class=\"figure-number\">Figure 2: </span>Analyzing a moving average filter. (a) averager block diagram; (b) impulse input and impulse response; (c) averager frequency magnitude reponse." >}}
## Periodic Sampling {#periodic-sampling}
@@ -57,20 +57,20 @@ Year
### Aliasing: Signal Ambiguity In The Frequency Domain {#aliasing-signal-ambiguity-in-the-frequency-domain}
<a id="org0ff6bb3"></a>
<a id="figure--fig:lyons11-frequency-ambiguity"></a>
{{< figure src="/ox-hugo/lyons11_frequency_ambiguity.png" caption="Figure 3: Frequency ambiguity; (a) discrete time sequence of values; (b) two different sinewaves that pass through the points of discete sequence" >}}
{{< figure src="/ox-hugo/lyons11_frequency_ambiguity.png" caption="<span class=\"figure-number\">Figure 3: </span>Frequency ambiguity; (a) discrete time sequence of values; (b) two different sinewaves that pass through the points of discete sequence" >}}
### Sampling Lowpass Signals {#sampling-lowpass-signals}
<a id="org38fdf07"></a>
<a id="figure--fig:lyons11-noise-spectral-replication"></a>
{{< figure src="/ox-hugo/lyons11_noise_spectral_replication.png" caption="Figure 4: Spectral replications; (a) original continuous signal plus noise spectrum; (b) discrete spectrum with noise contaminating the signal of interest" >}}
{{< figure src="/ox-hugo/lyons11_noise_spectral_replication.png" caption="<span class=\"figure-number\">Figure 4: </span>Spectral replications; (a) original continuous signal plus noise spectrum; (b) discrete spectrum with noise contaminating the signal of interest" >}}
<a id="org5e8c824"></a>
<a id="figure--fig:lyons11-lowpass-sampling"></a>
{{< figure src="/ox-hugo/lyons11_lowpass_sampling.png" caption="Figure 5: Low pass analog filtering prior to sampling at a rate of \\(f\_s\\) Hz." >}}
{{< figure src="/ox-hugo/lyons11_lowpass_sampling.png" caption="<span class=\"figure-number\">Figure 5: </span>Low pass analog filtering prior to sampling at a rate of \\(f\_s\\) Hz." >}}
## The Discrete Fourier Transform {#the-discrete-fourier-transform}
@@ -531,96 +531,8 @@ X(m) = \sum\_{n = 0}^{N-1} x(n) e^{-j2 \pi n m /N}
### 13.51 A Stable Goertzel Algorithm {#13-dot-51-a-stable-goertzel-algorithm}
## A: The Arithmetic Of Complex Numbers {#a-the-arithmetic-of-complex-numbers}
## Bibliography {#bibliography}
### A.1 Graphical Representation Of Real And Complex Numbers {#a-dot-1-graphical-representation-of-real-and-complex-numbers}
### A.2 Arithmetic Representation Of Complex Numbers {#a-dot-2-arithmetic-representation-of-complex-numbers}
### A.3 Arithmetic Operations Of Complex Numbers {#a-dot-3-arithmetic-operations-of-complex-numbers}
### A.4 Some Practical Implications Of Using Complex Numbers {#a-dot-4-some-practical-implications-of-using-complex-numbers}
## B: Closed Form Of A Geometric Series {#b-closed-form-of-a-geometric-series}
## C: Time Reversal And The Dft {#c-time-reversal-and-the-dft}
## D: Mean,Variance, And Standard Deviation {#d-mean-variance-and-standard-deviation}
### D.1 Statistical Measures {#d-dot-1-statistical-measures}
### D.2 Statistics Of Short Sequences {#d-dot-2-statistics-of-short-sequences}
### D.3 Statistics Of Summed Sequences {#d-dot-3-statistics-of-summed-sequences}
### D.4 Standard Deviation (Rms) Of A Continuous Sinewave {#d-dot-4-standard-deviation--rms--of-a-continuous-sinewave}
### D.5 Estimating Signal-To-Noise Ratios {#d-dot-5-estimating-signal-to-noise-ratios}
### D.6 The Mean And Variance Of Random Functions {#d-dot-6-the-mean-and-variance-of-random-functions}
### D.7 The Normal Probability Density Function {#d-dot-7-the-normal-probability-density-function}
## E: Decibels (Db And Dbm) {#e-decibels--db-and-dbm}
### E.1 Using Logarithms To Determine Relative Signal Power {#e-dot-1-using-logarithms-to-determine-relative-signal-power}
### E.2 Some Useful Decibel Numbers {#e-dot-2-some-useful-decibel-numbers}
### E.3 Absolute Power Using Decibels {#e-dot-3-absolute-power-using-decibels}
## F: Digital Filter Terminology {#f-digital-filter-terminology}
## G: Frequency Sampling Filter Derivations {#g-frequency-sampling-filter-derivations}
### G.1 Frequency Response Of A Comb Filter {#g-dot-1-frequency-response-of-a-comb-filter}
### G.2 Single Complex Fsf Frequency Response {#g-dot-2-single-complex-fsf-frequency-response}
### G.3 Multisection Complex Fsf Phase {#g-dot-3-multisection-complex-fsf-phase}
### G.4 Multisection Complex Fsf Frequency Response {#g-dot-4-multisection-complex-fsf-frequency-response}
### G.5 Real Fsf Transfer Function {#g-dot-5-real-fsf-transfer-function}
### G.6 Type-Iv Fsf Frequency Response {#g-dot-6-type-iv-fsf-frequency-response}
## H: Frequency Sampling Filter Design Tables {#h-frequency-sampling-filter-design-tables}
## I: Computing Chebyshev Window Sequences {#i-computing-chebyshev-window-sequences}
### I.1 Chebyshev Windows For Fir Filter Design {#i-dot-1-chebyshev-windows-for-fir-filter-design}
### I.2 Chebyshev Windows For Spectrum Analysis {#i-dot-2-chebyshev-windows-for-spectrum-analysis}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Lyons, Richard. 2011. <i>Understanding Digital Signal Processing</i>. Upper Saddle River, NJ: Prentice Hall.</div>
</div>

View File

@@ -1,15 +1,15 @@
+++
title = "The scientist and engineer's guide to digital signal processing - second edition"
author = ["Thomas Dehaeze"]
author = ["Dehaeze Thomas"]
keywords = ["Signal Processing"]
draft = true
+++
Tags
: [Digital Signal Processing]({{< relref "digital_signal_processing" >}})
: [Digital Signal Processing]({{< relref "digital_signal_processing.md" >}})
Reference
: ([Smith 1999](#org023917a))
: (<a href="#citeproc_bib_item_1">Smith 1999</a>)
Author(s)
: Smith, S. W.
@@ -18,7 +18,8 @@ Year
: 1999
## Bibliography {#bibliography}
<a id="org023917a"></a>Smith, Steven W. 1999. _The Scientist and Engineers Guide to Digital Signal Processing - Second Edition_. California Technical Publishing.
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Smith, Steven W. 1999. <i>The Scientist and Engineers Guide to Digital Signal Processing - Second Edition</i>. California Technical Publishing.</div>
</div>