Update Content - 2020-09-04
This commit is contained in:
77
content/zettels/analog_to_digital_converters.md
Normal file
77
content/zettels/analog_to_digital_converters.md
Normal file
@@ -0,0 +1,77 @@
|
||||
+++
|
||||
title = "Analog to Digital Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
|
||||
## Power Spectral Density of the Quantization Noise {#power-spectral-density-of-the-quantization-noise}
|
||||
|
||||
This analysis is taken from [here](https://www.allaboutcircuits.com/technical-articles/quantization-nois-amplitude-quantization-error-analog-to-digital-converters/).
|
||||
|
||||
Let's note:
|
||||
|
||||
- \\(q = \frac{\Delta V}{2^n}\\) the quantization in [V] (the corresponding value in [V] of the least significant bit)
|
||||
- \\(\Delta V\\) is the full range of the ADC in [V]
|
||||
- \\(n\\) is the number of ADC's bits
|
||||
- \\(f\_s\\) is the sample frequency in [Hz]
|
||||
|
||||
Let's suppose that the ADC is ideal and the only noise comes from the quantization error.
|
||||
Interestingly, the noise amplitude is uniformly distributed.
|
||||
|
||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org5158d30)).
|
||||
|
||||
<a id="org5158d30"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||
|
||||
Now, we can calculate the time average power of the quantization noise as
|
||||
|
||||
\begin{equation}
|
||||
P\_q = \int\_{-q/2}^{q/2} e^2 p(e) de = \frac{q^2}{12}
|
||||
\end{equation}
|
||||
|
||||
The other important parameter of a noise source is the power spectral density (PSD), which indicates how the noise power spreads in different frequency bands.
|
||||
To find the power spectral density, we need to calculate the Fourier transform of the autocorrelation function of the noise.
|
||||
|
||||
Assuming that the noise samples are not correlated with one another, we can approximate the autocorrelation function with a delta function in the time domain.
|
||||
Since the Fourier transform of a delta function is equal to one, the **power spectral density will be frequency independent**.
|
||||
Therefore, the quantization noise is white noise with total power equal to \\(P\_q = \frac{q^2}{12}\\).
|
||||
|
||||
Thus, the two-sided PSD (from \\(\frac{-f\_s}{2}\\) to \\(\frac{f\_s}{2}\\)), we should divide the noise power \\(P\_q\\) by \\(f\_s\\):
|
||||
|
||||
\begin{equation}
|
||||
\int\_{-f\_s/2}^{f\_s/2} \Gamma(f) d f = f\_s \Gamma = \frac{q^2}{12}
|
||||
\end{equation}
|
||||
|
||||
<div class="important">
|
||||
<div></div>
|
||||
|
||||
Finally, the Power Spectral Density of the quantization noise of an ADC is equal to:
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\Gamma &= \frac{q^2}{12 f\_s} \\\\\\
|
||||
&= \frac{\left(\frac{\Delta V}{2^n}\right)^2}{12 f\_s} \text{ in } \left[ \frac{V^2}{Hz} \right]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
</div>
|
||||
|
||||
<div class="examp">
|
||||
<div></div>
|
||||
|
||||
Let's take a 18bits ADC with a range of +/-10V and a sample frequency of 10kHz.
|
||||
|
||||
The quantization is:
|
||||
\\[ q = \frac{20}{2^{18}} = 0.000076 \ [V] = 76 \ [\mu V] \\]
|
||||
|
||||
\\[ \Gamma\_Q = \frac{q^2}{12 f\_N} = 4.85 \cdot 10^{-14} \quad [V^2/Hz] \\]
|
||||
|
||||
</div>
|
||||
|
||||
<./biblio/references.bib>
|
10
content/zettels/digital_to_analog_converters.md
Normal file
10
content/zettels/digital_to_analog_converters.md
Normal file
@@ -0,0 +1,10 @@
|
||||
+++
|
||||
title = "Digital to Analog Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
<./biblio/references.bib>
|
30
content/zettels/flexures.md
Normal file
30
content/zettels/flexures.md
Normal file
@@ -0,0 +1,30 @@
|
||||
+++
|
||||
title = "Flexures"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
|
||||
## Material Used {#material-used}
|
||||
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
- ([Smith 2000](#org0c6025e))
|
||||
- ([Lobontiu 2002](#org42ce68f))
|
||||
- ([Henein 2003](#org59d412b))
|
||||
- ([Cosandier 2017](#org637114f))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org637114f"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org59d412b"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="org42ce68f"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="org0c6025e"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
@@ -10,9 +10,10 @@ Tags
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------|---------------------------------------------------------------------------------------------------------------|
|
||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) |
|
||||
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/impact-hammers) |
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|---------------------------------------------------------------------------------------------------------------|----------|
|
||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA |
|
||||
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK |
|
||||
| Dewesoft | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,13 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
@@ -18,7 +18,7 @@ Tags
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgdd1b6d5)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org0e7fb0d)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@@ -116,9 +116,9 @@ Description:
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
([Jang and Kim 2017](#orgbcf1569))
|
||||
([Jang and Kim 2017](#orga6fb604))
|
||||
|
||||
<a id="orgf2b5520"></a>
|
||||
<a id="org22624ed"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
@@ -130,10 +130,11 @@ Description:
|
||||
| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
|
||||
| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
|
||||
| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
|
||||
| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgdd1b6d5"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<a id="org0e7fb0d"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
||||
<a id="orgbcf1569"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
<a id="orga6fb604"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
18
content/zettels/rotation_stage.md
Normal file
18
content/zettels/rotation_stage.md
Normal file
@@ -0,0 +1,18 @@
|
||||
+++
|
||||
title = "Rotation Stage"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Slip Rings]({{< relref "slip_rings" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|-------------------|-------------------------------------------|---------|
|
||||
| Huber | [link](https://www.xhuber.com/en/) | Germany |
|
||||
| LAB Motion System | [link](http://www.leuvenairbearings.com/) | Belgium |
|
||||
|
||||
<./biblio/references.bib>
|
@@ -16,15 +16,14 @@ Tags
|
||||
|
||||
<https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems/permanent-magnet-shakers/V201>
|
||||
|
||||
| Manufacturers | Links |
|
||||
|--------------------|----------------------------------------------------------------------------------|
|
||||
| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) |
|
||||
| The Modal Shop | [link](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) |
|
||||
| Deweshop | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) |
|
||||
| Bruel and Kjaer | [link](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) |
|
||||
| YMC | [link](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) |
|
||||
| BKSV | [link](https://www.bksv.com/en/products/shakers-and-exciters) |
|
||||
| Vibration Research | [link](https://vibrationresearch.com/shakers/) |
|
||||
| Sentek Dynamics | [link](https://www.sentekdynamics.com/) |
|
||||
| Manufacturers | Links | Country |
|
||||
|--------------------|----------------------------------------------------------------------------------|-----------|
|
||||
| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
|
||||
| The Modal Shop | [link](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA |
|
||||
| Deweshop | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia |
|
||||
| Bruel and Kjaer | [link](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark |
|
||||
| YMC | [link](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
|
||||
| Vibration Research | [link](https://vibrationresearch.com/shakers/) | USA |
|
||||
| Sentek Dynamics | [link](https://www.sentekdynamics.com/) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments]({{< relref "tang18_decen_vibrat_contr_voice_coil" >}})
|
||||
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
|
||||
@@ -32,40 +32,59 @@ Tags
|
||||
:
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
||||
| PI | [link](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
|
||||
| Newport | [link](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
|
||||
| Symetrie | [link](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
|
||||
|
||||
|
||||
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
|
||||
|
||||
| Beamline | Manufacturer | Comments |
|
||||
|----------|--------------|-----------------------------------|
|
||||
| ID11 | Symetrie | Small, Piezo based |
|
||||
| ID31 | Symetrie | Large Stroke, Encoders, DC motors |
|
||||
| ID01 | PI | |
|
||||
| ID16a | ESRF | Piezo (PI) |
|
||||
|
||||
|
||||
## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms}
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#orgaa46d57))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#org378c866))
|
||||
- ([McInroy 1999](#org3334ff2))
|
||||
- ([McInroy and Hamann 2000](#orgbb67e4d))
|
||||
- ([Chen and McInroy 2000](#org37a21cf))
|
||||
- ([McInroy 2002](#org8af76b7))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgd55cfdb))
|
||||
- ([Lin and McInroy 2003](#orged11f1d))
|
||||
- ([Jafari and McInroy 2003](#org3d4fb3c))
|
||||
- ([Chen and McInroy 2004](#orgda0daba))
|
||||
- ([O’Brien et al. 1998](#org71c69cc))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgd9fe3c1))
|
||||
- ([McInroy 1999](#org82cce67))
|
||||
- ([McInroy and Hamann 2000](#orgc17f973))
|
||||
- ([Chen and McInroy 2000](#org21fffc9))
|
||||
- ([McInroy 2002](#org2f95611))
|
||||
- ([Li, Hamann, and McInroy 2001](#org247940b))
|
||||
- ([Lin and McInroy 2003](#org39928ef))
|
||||
- ([Jafari and McInroy 2003](#org1e7c00b))
|
||||
- ([Chen and McInroy 2004](#orgc6995cb))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgda0daba"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
<a id="orgc6995cb"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="org37a21cf"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org21fffc9"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org3d4fb3c"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
<a id="org1e7c00b"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="orged11f1d"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
<a id="org39928ef"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="orgd55cfdb"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
<a id="org247940b"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="org3334ff2"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
<a id="org82cce67"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="org8af76b7"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
<a id="org2f95611"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="orgbb67e4d"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
<a id="orgc17f973"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="org378c866"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
<a id="orgd9fe3c1"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="orgaa46d57"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
<a id="org71c69cc"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Element and system design for active and passive vibration isolation]({{< relref "zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" >}})
|
||||
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
|
||||
@@ -31,4 +31,11 @@ draft = false
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Vibration Isolation Tables {#vibration-isolation-tables}
|
||||
|
||||
| Manufacturer | links |
|
||||
|--------------|-----------------------------------------------------------|
|
||||
| TMC | [link](https://www.techmfg.com/products/stacis/stacisiii) |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
|
||||
@@ -15,13 +15,32 @@ Tags
|
||||
## Voltage Amplifiers to drive Capacitive Load {#voltage-amplifiers-to-drive-capacitive-load}
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|
||||
| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
||||
| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
|
||||
| Micromega Dynamics | | Belgium |
|
||||
| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
|
||||
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
|
||||
| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany |
|
||||
| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
|
||||
| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
|
||||
| Madcitylabs | [link](http://www.madcitylabs.com/piezoactuators.html) | USA |
|
||||
| Piezosystem | [link](https://www.piezosystem.com/products/controller/) | Germany |
|
||||
| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan |
|
||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/08.html) | Japan |
|
||||
|
||||
|
||||
### Limitation in Current {#limitation-in-current}
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org7969f96)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgf2b344c)).
|
||||
|
||||
<a id="org7969f96"></a>
|
||||
<a id="orgf2b344c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
@@ -41,7 +60,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org310483b).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org1190638).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@@ -55,7 +74,7 @@ C = 1e-6; % [F]
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="org310483b"></a>
|
||||
<a id="org1190638"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
@@ -69,7 +88,7 @@ If driven at \\(\Delta U = 100V\\), \\(C = 1 \mu F\\) and \\(I\_\text{max} = 1 A
|
||||
|
||||
### Bandwidth limitation (small signals) {#bandwidth-limitation--small-signals}
|
||||
|
||||
This is takken from Chapter 14 of ([Fleming and Leang 2014](#orga9ea9d3)).
|
||||
This is takken from Chapter 14 of ([Fleming and Leang 2014](#org2e80fee)).
|
||||
|
||||
```matlab
|
||||
L = 250e-9; % Cable inductance [H]
|
||||
@@ -92,23 +111,7 @@ Specifications are usually:
|
||||
|
||||
The bandwidth can be estimated from the Maximum Current and the Capacitance of the Piezoelectric Actuator.
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|
||||
| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
||||
| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
|
||||
| Micromega Dynamics | | Belgium |
|
||||
| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
|
||||
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
|
||||
| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany |
|
||||
| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
|
||||
| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
|
||||
| Madcitylabs | [link](http://www.madcitylabs.com/piezoactuators.html) | USA |
|
||||
| Piezosystem | [link](https://www.piezosystem.com/products/controller/) | Germany |
|
||||
| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan |
|
||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/08.html) | Japan |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga9ea9d3"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
<a id="org2e80fee"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
Reference in New Issue
Block a user