Change export bibliography links
This commit is contained in:
parent
3816e389e9
commit
5cd67f9b6a
@ -8,7 +8,7 @@ Tags
|
||||
: [H Infinity Control]({{< relref "h_infinity_control" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="5b41da575e27e6e86f1a1410a0170836"><a class="reference-link" href="#bibel92_guidel_h" title="Bibel \& Malyevac, Guidelines for the selection of weighting functions for H-infinity control, NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA, (1992).">(Bibel \& Malyevac, 1992)</a></sup>
|
||||
: ([Bibel and Malyevac 1992](#org47391fd))
|
||||
|
||||
Author(s)
|
||||
: Bibel, J. E., & Malyevac, D. S.
|
||||
@ -19,11 +19,11 @@ Year
|
||||
|
||||
## Properties of feedback control {#properties-of-feedback-control}
|
||||
|
||||
<a id="org5999225"></a>
|
||||
<a id="org55b0783"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_control_diag.png" caption="Figure 1: Control System Diagram" >}}
|
||||
|
||||
From the figure [1](#org5999225), we have:
|
||||
From the figure [1](#org55b0783), we have:
|
||||
|
||||
\begin{align\*}
|
||||
y(s) &= T(s) r(s) + S(s) d(s) - T(s) n(s)\\\\\\
|
||||
@ -77,11 +77,11 @@ Usually, reference signals and disturbances occur at low frequencies, while nois
|
||||
|
||||
</div>
|
||||
|
||||
<a id="org4e0009c"></a>
|
||||
<a id="orgbbca2ea"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_general_plant.png" caption="Figure 2: \\(\mathcal{H}\_\infty\\) control framework" >}}
|
||||
|
||||
New design framework (figure [2](#org4e0009c)): \\(P(s)\\) is the **generalized plant** transfer function matrix:
|
||||
New design framework (figure [2](#orgbbca2ea)): \\(P(s)\\) is the **generalized plant** transfer function matrix:
|
||||
|
||||
- \\(w\\): exogenous inputs
|
||||
- \\(z\\): regulated performance output
|
||||
@ -108,9 +108,9 @@ The \\(H\_\infty\\) control problem is to find a controller that minimizes \\(\\
|
||||
|
||||
## Weights for inputs/outputs signals {#weights-for-inputs-outputs-signals}
|
||||
|
||||
Since \\(S\\) and \\(T\\) cannot be minimized together at all frequency, **weights are introduced to shape the solutions**. Not only can \\(S\\) and \\(T\\) be weighted, but other regulated performance variables and inputs (figure [3](#orgdd8fae0)).
|
||||
Since \\(S\\) and \\(T\\) cannot be minimized together at all frequency, **weights are introduced to shape the solutions**. Not only can \\(S\\) and \\(T\\) be weighted, but other regulated performance variables and inputs (figure [3](#org75a0ac3)).
|
||||
|
||||
<a id="orgdd8fae0"></a>
|
||||
<a id="org75a0ac3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_hinf_weights.png" caption="Figure 3: Input and Output weights in \\(\mathcal{H}\_\infty\\) framework" >}}
|
||||
|
||||
@ -154,15 +154,15 @@ When using both \\(W\_S\\) and \\(W\_T\\), it is important to make sure that the
|
||||
|
||||
## Unmodeled dynamics weighting function {#unmodeled-dynamics-weighting-function}
|
||||
|
||||
Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an **unmodeled dynamics uncertainty block** that may be added from the plant input to the plant output (figure [4](#org0d13a20)).
|
||||
Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an **unmodeled dynamics uncertainty block** that may be added from the plant input to the plant output (figure [4](#orgd3e0294)).
|
||||
|
||||
<a id="org0d13a20"></a>
|
||||
<a id="orgd3e0294"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_unmodeled_dynamics.png" caption="Figure 4: Unmodeled dynamics model" >}}
|
||||
|
||||
The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown figure [5](#org45b0983).
|
||||
The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown figure [5](#org6d5884c).
|
||||
|
||||
<a id="org45b0983"></a>
|
||||
<a id="org6d5884c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_weight_dynamics.png" caption="Figure 5: Example of unmodeled dynamics weight" >}}
|
||||
|
||||
@ -181,5 +181,7 @@ Typically actuator input weights are constant over frequency and set at the inve
|
||||
|
||||
**The order of the weights should be kept reasonably low** to reduce the order of th resulting optimal compensator and avoid potential convergence problems in the DK interactions.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="bibel92_guidel_h">Bibel, J. E., & Malyevac, D. S., *Guidelines for the selection of weighting functions for h-infinity control* (1992).</a> [↩](#5b41da575e27e6e86f1a1410a0170836)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org47391fd"></a>Bibel, John E, and D Stephen Malyevac. 1992. “Guidelines for the Selection of Weighting Functions for H-Infinity Control.” NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA.
|
||||
|
Loading…
Reference in New Issue
Block a user