Update all files with new citeproc-org package
This commit is contained in:
@@ -9,7 +9,7 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: <sup id="279b5558de3a8131b329a9ba1a99e4f8"><a class="reference-link" href="#alkhatib03_activ_struc_vibrat_contr" title="Rabih Alkhatib \& Golnaraghi, Active Structural Vibration Control: a Review, {The Shock and Vibration Digest}, v(5), 367-383 (2003).">(Rabih Alkhatib \& Golnaraghi, 2003)</a></sup>
|
||||
: ([Alkhatib and Golnaraghi 2003](#org701171b))
|
||||
|
||||
Author(s)
|
||||
: Alkhatib, R., & Golnaraghi, M. F.
|
||||
@@ -123,12 +123,12 @@ Uncertainty can be divided into four types:
|
||||
- neglected nonlinearities
|
||||
|
||||
The \\(\mathcal{H}\_\infty\\) controller is developed to address uncertainty by systematic means.
|
||||
A general block diagram of the control system is shown figure [1](#orgb7a9ee5).
|
||||
A general block diagram of the control system is shown figure [1](#orgb5f10b2).
|
||||
|
||||
A **frequency shaped filter** \\(W(s)\\) coupled to selected inputs and outputs of the plant is included.
|
||||
The outputs of this frequency shaped filter define the error ouputs used to evaluate the system performance and generate the **cost** that will be used in the design process.
|
||||
|
||||
<a id="orgb7a9ee5"></a>
|
||||
<a id="orgb5f10b2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/alkhatib03_hinf_control.png" caption="Figure 1: Block diagram for robust control" >}}
|
||||
|
||||
@@ -200,11 +200,11 @@ Two different methods
|
||||
|
||||
## Active Control Effects on the System {#active-control-effects-on-the-system}
|
||||
|
||||
<a id="org352d1a3"></a>
|
||||
<a id="orgb195fbc"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/alkhatib03_1dof_control.png" caption="Figure 2: 1 DoF control of a spring-mass-damping system" >}}
|
||||
|
||||
Consider the control system figure [2](#org352d1a3), the equation of motion of the system is:
|
||||
Consider the control system figure [2](#orgb195fbc), the equation of motion of the system is:
|
||||
\\[ m\ddot{x} + c\dot{x} + kx = f\_a + f \\]
|
||||
|
||||
The controller force can be expressed as: \\(f\_a = -g\_a \ddot{x} + g\_v \dot{x} + g\_d x\\). The equation of motion becomes:
|
||||
@@ -224,5 +224,7 @@ The problem of optimizing the locations of the actuators can be more significant
|
||||
|
||||
If the actuator is placed at the wrong location, the system will require a greater force control. In that case, the system is said to have a **low degree of controllability**.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="alkhatib03_activ_struc_vibrat_contr">Alkhatib, R., & Golnaraghi, M. F., *Active structural vibration control: a review*, The Shock and Vibration Digest, *35(5)*, 367–383 (2003). http://dx.doi.org/10.1177/05831024030355002</a> [↩](#279b5558de3a8131b329a9ba1a99e4f8)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org701171b"></a>Alkhatib, Rabih, and M. F. Golnaraghi. 2003. “Active Structural Vibration Control: A Review.” _The Shock and Vibration Digest_ 35 (5):367–83. <https://doi.org/10.1177/05831024030355002>.
|
||||
|
Reference in New Issue
Block a user