Update all files with new citeproc-org package

This commit is contained in:
2020-08-17 23:00:20 +02:00
parent 5cd67f9b6a
commit 590782ba60
106 changed files with 1167 additions and 1138 deletions

View File

@@ -9,7 +9,7 @@ Tags
Reference
: <sup id="279b5558de3a8131b329a9ba1a99e4f8"><a class="reference-link" href="#alkhatib03_activ_struc_vibrat_contr" title="Rabih Alkhatib \&amp; Golnaraghi, Active Structural Vibration Control: a Review, {The Shock and Vibration Digest}, v(5), 367-383 (2003).">(Rabih Alkhatib \& Golnaraghi, 2003)</a></sup>
: ([Alkhatib and Golnaraghi 2003](#org701171b))
Author(s)
: Alkhatib, R., & Golnaraghi, M. F.
@@ -123,12 +123,12 @@ Uncertainty can be divided into four types:
- neglected nonlinearities
The \\(\mathcal{H}\_\infty\\) controller is developed to address uncertainty by systematic means.
A general block diagram of the control system is shown figure [1](#orgb7a9ee5).
A general block diagram of the control system is shown figure [1](#orgb5f10b2).
A **frequency shaped filter** \\(W(s)\\) coupled to selected inputs and outputs of the plant is included.
The outputs of this frequency shaped filter define the error ouputs used to evaluate the system performance and generate the **cost** that will be used in the design process.
<a id="orgb7a9ee5"></a>
<a id="orgb5f10b2"></a>
{{< figure src="/ox-hugo/alkhatib03_hinf_control.png" caption="Figure 1: Block diagram for robust control" >}}
@@ -200,11 +200,11 @@ Two different methods
## Active Control Effects on the System {#active-control-effects-on-the-system}
<a id="org352d1a3"></a>
<a id="orgb195fbc"></a>
{{< figure src="/ox-hugo/alkhatib03_1dof_control.png" caption="Figure 2: 1 DoF control of a spring-mass-damping system" >}}
Consider the control system figure [2](#org352d1a3), the equation of motion of the system is:
Consider the control system figure [2](#orgb195fbc), the equation of motion of the system is:
\\[ m\ddot{x} + c\dot{x} + kx = f\_a + f \\]
The controller force can be expressed as: \\(f\_a = -g\_a \ddot{x} + g\_v \dot{x} + g\_d x\\). The equation of motion becomes:
@@ -224,5 +224,7 @@ The problem of optimizing the locations of the actuators can be more significant
If the actuator is placed at the wrong location, the system will require a greater force control. In that case, the system is said to have a **low degree of controllability**.
# Bibliography
<a class="bibtex-entry" id="alkhatib03_activ_struc_vibrat_contr">Alkhatib, R., & Golnaraghi, M. F., *Active structural vibration control: a review*, The Shock and Vibration Digest, *35(5)*, 367383 (2003). http://dx.doi.org/10.1177/05831024030355002</a> [](#279b5558de3a8131b329a9ba1a99e4f8)
## Bibliography {#bibliography}
<a id="org701171b"></a>Alkhatib, Rabih, and M. F. Golnaraghi. 2003. “Active Structural Vibration Control: A Review.” _The Shock and Vibration Digest_ 35 (5):36783. <https://doi.org/10.1177/05831024030355002>.