Update Content - 2021-02-03
This commit is contained in:
@@ -11,9 +11,9 @@ Tags
|
||||
|
||||
Resources:
|
||||
|
||||
- ([Skogestad and Postlethwaite 2007](#org4fdbcff))
|
||||
- ([Toivonen 2002](#org4782daf))
|
||||
- ([Zhang 2011](#org9b9c22a))
|
||||
- ([Skogestad and Postlethwaite 2007](#orgf64cea0))
|
||||
- ([Toivonen 2002](#org3ddabae))
|
||||
- ([Zhang 2011](#orge43be7a))
|
||||
|
||||
|
||||
## Definition {#definition}
|
||||
@@ -176,17 +176,17 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
|
||||
As explained in ([Monkhorst 2004](#orgb605c51)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in ([Monkhorst 2004](#org45aca82)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgb605c51"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="org45aca82"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="org4fdbcff"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="orgf64cea0"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="org4782daf"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
<a id="org3ddabae"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
<a id="org9b9c22a"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
<a id="orge43be7a"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
|
Reference in New Issue
Block a user