Update Content - 2021-02-13
This commit is contained in:
parent
ed4670a3e5
commit
520b0e0072
@ -0,0 +1,91 @@
|
|||||||
|
+++
|
||||||
|
title = "Enhanced damping of flexible structures using force feedback"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
: [Active Damping]({{< relref "active_damping" >}}), [Integral Force Feedback]({{< relref "integral_force_feedback" >}})
|
||||||
|
|
||||||
|
Reference
|
||||||
|
: ([Chesné, Milhomem, and Collette 2016](#org2953ca1))
|
||||||
|
|
||||||
|
Author(s)
|
||||||
|
: Simon Chesné, Milhomem, A., & Collette, C.
|
||||||
|
|
||||||
|
Year
|
||||||
|
: 2016
|
||||||
|
|
||||||
|
One problem of Integral Force Feedback (IFF) is that the achievable damping decreases at high frequency.
|
||||||
|
A modification of the IFF is proposed in order to significantly increase the damping of **a** selected mode.
|
||||||
|
|
||||||
|
The test system is shown in Figure [1](#org9c0dbe3).
|
||||||
|
|
||||||
|
Classical IFF corresponds to:
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
H(s) = \frac{g}{s}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
<a id="org9c0dbe3"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/chesne16_2dof_system.png" caption="Figure 1: Two DoF system representing a flexible structuer controlled by an active mount" >}}
|
||||||
|
|
||||||
|
The proposed controller, called **alpha controller** is:
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
H(s) = g \frac{s + \alpha}{s^2}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
where \\(\alpha\\) is a parameter.
|
||||||
|
|
||||||
|
A new pair of pole/zero has been introduced.
|
||||||
|
The new pole is located at \\(s = 0\\) and the zeros at \\(s = -\alpha\\).
|
||||||
|
|
||||||
|
For \\(\omega > \alpha\\) the controller is essentially an integrator.
|
||||||
|
For \\(\omega < \alpha\\) the controller is a double integrator.
|
||||||
|
|
||||||
|
Depending on the chosen \\(\alpha\\) we obtain different root locus as shown in Figure [2](#org08e7f67).
|
||||||
|
There is an optimal gain \\(\alpha^\star\\) at which the attainable damping of the flexible mode is maximized.
|
||||||
|
|
||||||
|
<a id="org08e7f67"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/chesne16_root_locus_alpha.png" caption="Figure 2: Root locus with the alpha controller for different values of \\(\alpha\\)" >}}
|
||||||
|
|
||||||
|
The obtained transmissibility is shown without controller, for classical IFF and for \\(\alpha\\) controller in Figure [3](#org2c2d3d7).
|
||||||
|
|
||||||
|
Using the \\(\alpha\\) controller, the compliance is however degraded a lot.
|
||||||
|
|
||||||
|
<a id="org2c2d3d7"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/chesne16_transmissibility.png" caption="Figure 3: Transmissibility \\(x\_1/x\_0\\)" >}}
|
||||||
|
|
||||||
|
In order to recover the compliance at low frequency, high pass filters can be added to the controller.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
H(s) = g \frac{s + \alpha}{(s + \beta)^2}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The condition for stability found here is:
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\alpha \ge \beta/2
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
<div class="sum">
|
||||||
|
<div></div>
|
||||||
|
|
||||||
|
The active damping of flexible structures with collocated force sensor/actuator pairs have been reviewed in this Note.
|
||||||
|
In the first part of the Note, two limitations of the integral force feedback (IFF) have been discussed, which are the limited damping of flexible modes and the loss of compliance.
|
||||||
|
By slightly modifying the controller, it has been shown that the active damping of a target mode can be significantly increased.
|
||||||
|
Analytical formulas of the optimal parameters have been derived.
|
||||||
|
In the second part, the loss of compliance inherent to IFF has been addressed.
|
||||||
|
It has been shown that, when a high-pass filter is inserted into the IFF controller, the compliance at low frequency can be recovered but the unconditional stability is lost.
|
||||||
|
On the other side, with the new proposed control law, the stability is always guaranteed even when using a high-pass filter.
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
|
<a id="org2953ca1"></a>Chesné, Simon, Ariston Milhomem, and Christophe Collette. 2016. “Enhanced Damping of Flexible Structures Using Force Feedback.” _Journal of Guidance, Control, and Dynamics_ 39 (7):1654–58. <https://doi.org/10.2514/1.g001620>.
|
22
content/article/thurner15_fiber_based_distan_sensin_inter.md
Normal file
22
content/article/thurner15_fiber_based_distan_sensin_inter.md
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
+++
|
||||||
|
title = "Fiber-Based Distance Sensing Interferometry"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
: [Interferometers]({{< relref "interferometers" >}})
|
||||||
|
|
||||||
|
Reference
|
||||||
|
: ([Thurner et al. 2015](#org6f5a8f6))
|
||||||
|
|
||||||
|
Author(s)
|
||||||
|
: Thurner, K., Quacquarelli, F. P., Braun, Pierre-Francois, Dal Savio, C., & Karrai, K.
|
||||||
|
|
||||||
|
Year
|
||||||
|
: 2015
|
||||||
|
|
||||||
|
|
||||||
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
|
<a id="org6f5a8f6"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
22
content/techreport/merlet87_paral_manip.md
Normal file
22
content/techreport/merlet87_paral_manip.md
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
+++
|
||||||
|
title = "Parallel manipulators. part i: theory design, kinematics, dynamics and control"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
: [Stewart Platforms]({{< relref "stewart_platforms" >}})
|
||||||
|
|
||||||
|
Reference
|
||||||
|
: ([Merlet 1987](#org07bdf3f))
|
||||||
|
|
||||||
|
Author(s)
|
||||||
|
: Merlet, J.
|
||||||
|
|
||||||
|
Year
|
||||||
|
: 1987
|
||||||
|
|
||||||
|
|
||||||
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
|
<a id="org07bdf3f"></a>Merlet, Jean-Pierre. 1987. “Parallel Manipulators. Part I: Theory Design, Kinematics, Dynamics and Control.” INRIA.
|
BIN
static/ox-hugo/chesne16_2dof_system.png
Normal file
BIN
static/ox-hugo/chesne16_2dof_system.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
BIN
static/ox-hugo/chesne16_root_locus_alpha.png
Normal file
BIN
static/ox-hugo/chesne16_root_locus_alpha.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 144 KiB |
BIN
static/ox-hugo/chesne16_transmissibility.png
Normal file
BIN
static/ox-hugo/chesne16_transmissibility.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 31 KiB |
Loading…
Reference in New Issue
Block a user