Update Content - 2024-12-17
This commit is contained in:
@@ -159,7 +159,7 @@ Three factors influence the performance:
|
||||
The DEB helps identifying which disturbance is the limiting factor, and it should be investigated if the controller can deal with this disturbance before re-designing the plant.
|
||||
|
||||
The modelling of disturbance as stochastic variables, is by excellence suitable for the optimal stochastic control framework.
|
||||
In Figure [1](#figure--fig:jabben07-general-plant), the generalized plant maps the disturbances to the performance channels.
|
||||
In [Figure 1](#figure--fig:jabben07-general-plant), the generalized plant maps the disturbances to the performance channels.
|
||||
By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the variance of the performance channels is minimized.
|
||||
|
||||
<a id="figure--fig:jabben07-general-plant"></a>
|
||||
@@ -169,11 +169,11 @@ By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the
|
||||
|
||||
#### Using Weighting Filters for Disturbance Modelling {#using-weighting-filters-for-disturbance-modelling}
|
||||
|
||||
Since disturbances are generally not white, the system of Figure [1](#figure--fig:jabben07-general-plant) needs to be augmented with so called **disturbance weighting filters**.
|
||||
Since disturbances are generally not white, the system of [Figure 1](#figure--fig:jabben07-general-plant) needs to be augmented with so called **disturbance weighting filters**.
|
||||
|
||||
A disturbance weighting filter gives the disturbance PSD when white noise as input is applied.
|
||||
|
||||
This is illustrated in Figure [2](#figure--fig:jabben07-weighting-functions) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
|
||||
This is illustrated in [Figure 2](#figure--fig:jabben07-weighting-functions) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
|
||||
|
||||
The generalized plant framework also allows to include **weighting filters for the performance channels**.
|
||||
This is useful for three reasons:
|
||||
@@ -207,7 +207,7 @@ So, to obtain feasible controllers, the performance channel is a combination of
|
||||
By choosing suitable weighting filters for \\(y\\) and \\(u\\), the performance can be optimized while keeping the controller effort limited:
|
||||
\\[ \\|z\\|\_{rms}^2 = \left\\| \begin{bmatrix} y \\\ \alpha u \end{bmatrix} \right\\|\_{rms}^2 = \\|y\\|\_{rms}^2 + \alpha^2 \\|u\\|\_{rms}^2 \\]
|
||||
|
||||
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#figure--fig:jabben07-pareto-curve-H2) is obtained.
|
||||
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in [Figure 3](#figure--fig:jabben07-pareto-curve-H2) is obtained.
|
||||
|
||||
<a id="figure--fig:jabben07-pareto-curve-H2"></a>
|
||||
|
||||
|
Reference in New Issue
Block a user