Update Content - 2024-12-17

This commit is contained in:
2024-12-17 15:37:17 +01:00
parent 4d585dd592
commit 4fb2b6c969
86 changed files with 1314 additions and 711 deletions

View File

@@ -159,7 +159,7 @@ Three factors influence the performance:
The DEB helps identifying which disturbance is the limiting factor, and it should be investigated if the controller can deal with this disturbance before re-designing the plant.
The modelling of disturbance as stochastic variables, is by excellence suitable for the optimal stochastic control framework.
In Figure [1](#figure--fig:jabben07-general-plant), the generalized plant maps the disturbances to the performance channels.
In [Figure 1](#figure--fig:jabben07-general-plant), the generalized plant maps the disturbances to the performance channels.
By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the variance of the performance channels is minimized.
<a id="figure--fig:jabben07-general-plant"></a>
@@ -169,11 +169,11 @@ By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the
#### Using Weighting Filters for Disturbance Modelling {#using-weighting-filters-for-disturbance-modelling}
Since disturbances are generally not white, the system of Figure [1](#figure--fig:jabben07-general-plant) needs to be augmented with so called **disturbance weighting filters**.
Since disturbances are generally not white, the system of [Figure 1](#figure--fig:jabben07-general-plant) needs to be augmented with so called **disturbance weighting filters**.
A disturbance weighting filter gives the disturbance PSD when white noise as input is applied.
This is illustrated in Figure [2](#figure--fig:jabben07-weighting-functions) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
This is illustrated in [Figure 2](#figure--fig:jabben07-weighting-functions) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
The generalized plant framework also allows to include **weighting filters for the performance channels**.
This is useful for three reasons:
@@ -207,7 +207,7 @@ So, to obtain feasible controllers, the performance channel is a combination of
By choosing suitable weighting filters for \\(y\\) and \\(u\\), the performance can be optimized while keeping the controller effort limited:
\\[ \\|z\\|\_{rms}^2 = \left\\| \begin{bmatrix} y \\\ \alpha u \end{bmatrix} \right\\|\_{rms}^2 = \\|y\\|\_{rms}^2 + \alpha^2 \\|u\\|\_{rms}^2 \\]
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#figure--fig:jabben07-pareto-curve-H2) is obtained.
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in [Figure 3](#figure--fig:jabben07-pareto-curve-H2) is obtained.
<a id="figure--fig:jabben07-pareto-curve-H2"></a>