Update Content - 2024-12-17
This commit is contained in:
@@ -42,7 +42,7 @@ The actuators for FJHs can be divided into two categories:
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy99_general_hexapod.png" caption="<span class=\"figure-number\">Figure 1: </span>A general Stewart Platform" >}}
|
||||
|
||||
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in Figure [2](#figure--fig:mcinroy99-strut-model).
|
||||
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in [Figure 2](#figure--fig:mcinroy99-strut-model).
|
||||
|
||||
In order to provide low frequency passive vibration isolation, the hard actuators are sometimes placed in series with additional passive springs.
|
||||
|
||||
@@ -52,8 +52,8 @@ In order to provide low frequency passive vibration isolation, the hard actuator
|
||||
|
||||
<a id="table--tab:mcinroy99-strut-model"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:mcinroy99-strut-model">Table 1</a></span>:
|
||||
Definition of quantities on Figure <a href="#org84f1a50">2</a>
|
||||
<span class="table-number"><a href="#table--tab:mcinroy99-strut-model">Table 1</a>:</span>
|
||||
Definition of quantities on <a href="#orgffe7e8f">2</a>
|
||||
</div>
|
||||
|
||||
| **Symbol** | **Meaning** |
|
||||
@@ -74,7 +74,7 @@ It is here supposed that \\(f\_{p\_i}\\) is predominantly in the strut direction
|
||||
This is a good approximation unless the spherical joints and extremely stiff or massive, of high inertia struts are used.
|
||||
This allows to reduce considerably the complexity of the model.
|
||||
|
||||
From Figure [2](#figure--fig:mcinroy99-strut-model) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
|
||||
From [Figure 2](#figure--fig:mcinroy99-strut-model) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
|
||||
|
||||
\begin{equation}
|
||||
m\_i \hat{u}\_i^T \ddot{p}\_i = f\_{m\_i} - f\_{p\_i} - m\_i \hat{u}\_i^Tg - k\_i(l\_i - l\_{r\_i}) - b\_i \dot{l}\_i
|
||||
@@ -165,6 +165,6 @@ In the next section, a connection between the two will be found to complete the
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 Ieee International Conference on Control Applications (Cat. No.99ch36328)</i>, nil. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>Ieee/Asme Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)</i>. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>IEEE/ASME Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user