Update Content - 2024-12-17
This commit is contained in:
@@ -75,7 +75,7 @@ The major restriction to the application of feedforward adaptive filtering is th
|
||||
|
||||
<a id="table--table:comparison-constrol-strat"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--table:comparison-constrol-strat">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--table:comparison-constrol-strat">Table 1</a>:</span>
|
||||
Comparison of control strategies
|
||||
</div>
|
||||
|
||||
@@ -123,7 +123,7 @@ Uncertainty can be divided into four types:
|
||||
- neglected nonlinearities
|
||||
|
||||
The \\(\mathcal{H}\_\infty\\) controller is developed to address uncertainty by systematic means.
|
||||
A general block diagram of the control system is shown figure [1](#figure--fig:alkhatib03-hinf-control).
|
||||
A general block diagram of the control system is shown [Figure 1](#figure--fig:alkhatib03-hinf-control).
|
||||
|
||||
A **frequency shaped filter** \\(W(s)\\) coupled to selected inputs and outputs of the plant is included.
|
||||
The outputs of this frequency shaped filter define the error ouputs used to evaluate the system performance and generate the **cost** that will be used in the design process.
|
||||
@@ -204,7 +204,7 @@ Two different methods
|
||||
|
||||
{{< figure src="/ox-hugo/alkhatib03_1dof_control.png" caption="<span class=\"figure-number\">Figure 2: </span>1 DoF control of a spring-mass-damping system" >}}
|
||||
|
||||
Consider the control system figure [2](#figure--fig:alkhatib03-1dof-control), the equation of motion of the system is:
|
||||
Consider the control system [Figure 2](#figure--fig:alkhatib03-1dof-control), the equation of motion of the system is:
|
||||
\\[ m\ddot{x} + c\dot{x} + kx = f\_a + f \\]
|
||||
|
||||
The controller force can be expressed as: \\(f\_a = -g\_a \ddot{x} + g\_v \dot{x} + g\_d x\\). The equation of motion becomes:
|
||||
|
@@ -23,7 +23,7 @@ Year
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_control_diag.png" caption="<span class=\"figure-number\">Figure 1: </span>Control System Diagram" >}}
|
||||
|
||||
From the figure [1](#figure--fig:bibel92-control-diag), we have:
|
||||
From the [Figure 1](#figure--fig:bibel92-control-diag), we have:
|
||||
|
||||
\begin{align\*}
|
||||
y(s) &= T(s) r(s) + S(s) d(s) - T(s) n(s)\\\\
|
||||
@@ -78,7 +78,7 @@ Usually, reference signals and disturbances occur at low frequencies, while nois
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_general_plant.png" caption="<span class=\"figure-number\">Figure 2: </span>\\(\mathcal{H}\_\infty\\) control framework" >}}
|
||||
|
||||
New design framework (figure [2](#figure--fig:bibel92-general-plant)): \\(P(s)\\) is the **generalized plant** transfer function matrix:
|
||||
New design framework ([Figure 2](#figure--fig:bibel92-general-plant)): \\(P(s)\\) is the **generalized plant** transfer function matrix:
|
||||
|
||||
- \\(w\\): exogenous inputs
|
||||
- \\(z\\): regulated performance output
|
||||
@@ -104,7 +104,7 @@ The \\(H\_\infty\\) control problem is to find a controller that minimizes \\(\\
|
||||
|
||||
## Weights for inputs/outputs signals {#weights-for-inputs-outputs-signals}
|
||||
|
||||
Since \\(S\\) and \\(T\\) cannot be minimized together at all frequency, **weights are introduced to shape the solutions**. Not only can \\(S\\) and \\(T\\) be weighted, but other regulated performance variables and inputs (figure [3](#figure--fig:bibel92-hinf-weights)).
|
||||
Since \\(S\\) and \\(T\\) cannot be minimized together at all frequency, **weights are introduced to shape the solutions**. Not only can \\(S\\) and \\(T\\) be weighted, but other regulated performance variables and inputs ([Figure 3](#figure--fig:bibel92-hinf-weights)).
|
||||
|
||||
<a id="figure--fig:bibel92-hinf-weights"></a>
|
||||
|
||||
@@ -148,13 +148,13 @@ When using both \\(W\_S\\) and \\(W\_T\\), it is important to make sure that the
|
||||
|
||||
## Unmodeled dynamics weighting function {#unmodeled-dynamics-weighting-function}
|
||||
|
||||
Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an **unmodeled dynamics uncertainty block** that may be added from the plant input to the plant output (figure [4](#figure--fig:bibel92-unmodeled-dynamics)).
|
||||
Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an **unmodeled dynamics uncertainty block** that may be added from the plant input to the plant output ([Figure 4](#figure--fig:bibel92-unmodeled-dynamics)).
|
||||
|
||||
<a id="figure--fig:bibel92-unmodeled-dynamics"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bibel92_unmodeled_dynamics.png" caption="<span class=\"figure-number\">Figure 4: </span>Unmodeled dynamics model" >}}
|
||||
|
||||
The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown figure [5](#figure--fig:bibel92-weight-dynamics).
|
||||
The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown [Figure 5](#figure--fig:bibel92-weight-dynamics).
|
||||
|
||||
<a id="figure--fig:bibel92-weight-dynamics"></a>
|
||||
|
||||
|
@@ -40,7 +40,7 @@ Year
|
||||
|
||||
## 9.5.2 Low-Authority Control/High-Authority Control [HAC-HAC]({{< relref "hac_hac.md" >}}) {#9-dot-5-dot-2-low-authority-control-high-authority-control-hac-hac--hac-hac-dot-md}
|
||||
|
||||
> Figure <fig:bryson93_hac_lac> shows the concept of Low-Authority Control/High-Authority Control (LAC/HAC) is the s-plane.
|
||||
> [Figure 1](#figure--fig:bryson93-hac-lac) shows the concept of Low-Authority Control/High-Authority Control (LAC/HAC) is the s-plane.
|
||||
> LAC uses a co-located rate sensor to add damping to all the vibratory modes (but not the rigid-body mode).
|
||||
> HAC uses a separated displacement sensor to stabilize the rigid body mode, which slightly decreases the damping of the vibratory modes but not enough to produce instability (called "spillover")
|
||||
|
||||
|
@@ -20,5 +20,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Butler, Hans. 2011. “Position Control in Lithographic Equipment.” <i>Ieee Control Systems</i> 31 (5): 28–47. doi:<a href="https://doi.org/10.1109/mcs.2011.941882">10.1109/mcs.2011.941882</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Butler, Hans. 2011. “Position Control in Lithographic Equipment.” <i>IEEE Control Systems</i> 31 (5): 28–47. doi:<a href="https://doi.org/10.1109/mcs.2011.941882">10.1109/mcs.2011.941882</a>.</div>
|
||||
</div>
|
||||
|
@@ -103,6 +103,6 @@ where
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 Ieee International Conference on Control Applications (Cat. No.99ch36328)</i>, nil. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)</i>. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)</i>. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
</div>
|
||||
|
@@ -51,7 +51,7 @@ The general expression of the force delivered by the actuator is \\(f = g\_a \dd
|
||||
|
||||
<a id="table--table:active-isolation"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--table:active-isolation">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--table:active-isolation">Table 1</a>:</span>
|
||||
Active isolation techniques
|
||||
</div>
|
||||
|
||||
|
@@ -28,7 +28,7 @@ Year
|
||||
|
||||
## Different types of sensors {#different-types-of-sensors}
|
||||
|
||||
In this paper, three types of sensors are used. Their advantages and disadvantages are summarized table [1](#table--tab:sensors).
|
||||
In this paper, three types of sensors are used. Their advantages and disadvantages are summarized [Table 1](#table--tab:sensors).
|
||||
|
||||
> Several types of sensors can be used for the feedback control of vibration isolation systems:
|
||||
>
|
||||
@@ -38,7 +38,7 @@ In this paper, three types of sensors are used. Their advantages and disadvantag
|
||||
|
||||
<a id="table--tab:sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:sensors">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:sensors">Table 1</a>:</span>
|
||||
Types of sensors
|
||||
</div>
|
||||
|
||||
@@ -51,11 +51,11 @@ In this paper, three types of sensors are used. Their advantages and disadvantag
|
||||
|
||||
## Inertial Control and sensor fusion configurations {#inertial-control-and-sensor-fusion-configurations}
|
||||
|
||||
For a simple 1DoF model, two fusion-sensor configuration are studied. The results are summarized Table [2](#table--tab:fusion-trade-off).
|
||||
For a simple 1DoF model, two fusion-sensor configuration are studied. The results are summarized [Table 2](#table--tab:fusion-trade-off).
|
||||
|
||||
<a id="table--tab:fusion-trade-off"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:fusion-trade-off">Table 2</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:fusion-trade-off">Table 2</a>:</span>
|
||||
Sensor fusion configurations
|
||||
</div>
|
||||
|
||||
@@ -103,5 +103,5 @@ Three types of sensors have been considered for the high frequency part of the f
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C., and F Matichard. 2014. “Vibration Control of Flexible Structures Using Fusion of Inertial Sensors and Hyper-Stable Actuator-Sensor Pairs.” In <i>International Conference on Noise and Vibration Engineering (Isma2014)</i>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C., and F Matichard. 2014. “Vibration Control of Flexible Structures Using Fusion of Inertial Sensors and Hyper-Stable Actuator-Sensor Pairs.” In <i>International Conference on Noise and Vibration Engineering (ISMA2014)</i>.</div>
|
||||
</div>
|
||||
|
@@ -28,5 +28,5 @@ The stability margins of the controller can be significantly increased with no o
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C., and F. Matichard. 2015. “Sensor Fusion Methods for High Performance Active Vibration Isolation Systems.” <i>Journal of Sound and Vibration</i> 342 (nil): 1–21. doi:<a href="https://doi.org/10.1016/j.jsv.2015.01.006">10.1016/j.jsv.2015.01.006</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C., and F. Matichard. 2015. “Sensor Fusion Methods for High Performance Active Vibration Isolation Systems.” <i>Journal of Sound and Vibration</i> 342: 1–21. doi:<a href="https://doi.org/10.1016/j.jsv.2015.01.006">10.1016/j.jsv.2015.01.006</a>.</div>
|
||||
</div>
|
||||
|
@@ -18,7 +18,7 @@ Year
|
||||
|
||||
<a id="table--tab:parallel-vs-serial-manipulators"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:parallel-vs-serial-manipulators">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:parallel-vs-serial-manipulators">Table 1</a>:</span>
|
||||
Parallel VS serial manipulators
|
||||
</div>
|
||||
|
||||
|
@@ -30,5 +30,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Devasia, Santosh, Evangelos Eleftheriou, and SO Reza Moheimani. 2007. “A Survey of Control Issues in Nanopositioning.” <i>Ieee Transactions on Control Systems Technology</i> 15 (5). IEEE: 802–23.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Devasia, Santosh, Evangelos Eleftheriou, and SO Reza Moheimani. 2007. “A Survey of Control Issues in Nanopositioning.” <i>IEEE Transactions on Control Systems Technology</i> 15 (5). IEEE: 802–23.</div>
|
||||
</div>
|
||||
|
@@ -124,5 +124,5 @@ The capacitance of a piezoelectric stack is typically between \\(1 \mu F\\) and
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>IEEE/ASME Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
</div>
|
||||
|
@@ -21,5 +21,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J. 2012. “Estimating the Resolution of Nanopositioning Systems from Frequency Domain Data.” In <i>2012 Ieee International Conference on Robotics and Automation</i>, nil. doi:<a href="https://doi.org/10.1109/icra.2012.6224850">10.1109/icra.2012.6224850</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J. 2012. “Estimating the Resolution of Nanopositioning Systems from Frequency Domain Data.” In <i>2012 IEEE International Conference on Robotics and Automation</i>. doi:<a href="https://doi.org/10.1109/icra.2012.6224850">10.1109/icra.2012.6224850</a>.</div>
|
||||
</div>
|
||||
|
@@ -147,7 +147,7 @@ The empirical rule states that there is a \\(99.7\\%\\) probability that a sampl
|
||||
This if we define the resolution as \\(\delta = 6 \sigma\\), we will referred to as the \\(6\sigma\text{-resolution}\\).
|
||||
|
||||
Another important parameter that must be specified when quoting resolution is the sensor bandwidth.
|
||||
There is usually a trade-off between bandwidth and resolution (figure [3](#figure--fig:tradeoff-res-bandwidth)).
|
||||
There is usually a trade-off between bandwidth and resolution ([Figure 3](#figure--fig:tradeoff-res-bandwidth)).
|
||||
|
||||
<a id="figure--fig:tradeoff-res-bandwidth"></a>
|
||||
|
||||
@@ -166,7 +166,7 @@ A convenient method for reporting this ratio is in parts-per-million (ppm):
|
||||
|
||||
<a id="table--tab:summary-position-sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 1</a>:</span>
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100\,\mu m\) and a first order bandwidth of \(1\,kHz\)
|
||||
</div>
|
||||
|
||||
@@ -185,5 +185,5 @@ A convenient method for reporting this ratio is in parts-per-million (ppm):
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190 (nil): 106–26. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190: 106–26. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
|
||||
</div>
|
||||
|
@@ -21,5 +21,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J., Yik Ren Teo, and Kam K. Leang. 2015. “Low-Order Damping and Tracking Control for Scanning Probe Systems.” <i>Frontiers in Mechanical Engineering</i> 1 (nil): nil. doi:<a href="https://doi.org/10.3389/fmech.2015.00014">10.3389/fmech.2015.00014</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J., Yik Ren Teo, and Kam K. Leang. 2015. “Low-Order Damping and Tracking Control for Scanning Probe Systems.” <i>Frontiers in Mechanical Engineering</i> 1. doi:<a href="https://doi.org/10.3389/fmech.2015.00014">10.3389/fmech.2015.00014</a>.</div>
|
||||
</div>
|
||||
|
@@ -20,5 +20,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” <i>Cirp Annals</i> 64 (2): 773–96. doi:<a href="https://doi.org/10.1016/j.cirp.2015.05.009">10.1016/j.cirp.2015.05.009</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” <i>CIRP Annals</i> 64 (2): 773–96. doi:<a href="https://doi.org/10.1016/j.cirp.2015.05.009">10.1016/j.cirp.2015.05.009</a>.</div>
|
||||
</div>
|
||||
|
@@ -38,5 +38,5 @@ The control rate should be weighted appropriately in order to not saturate the s
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Garg, Sanjay. 2007. “Implementation Challenges for Multivariable Control: What You Did Not Learn in School!” In <i>Aiaa Guidance, Navigation and Control Conference and Exhibit</i>, nil. doi:<a href="https://doi.org/10.2514/6.2007-6334">10.2514/6.2007-6334</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Garg, Sanjay. 2007. “Implementation Challenges for Multivariable Control: What You Did Not Learn in School!” In <i>AIAA Guidance, Navigation and Control Conference and Exhibit</i>. doi:<a href="https://doi.org/10.2514/6.2007-6334">10.2514/6.2007-6334</a>.</div>
|
||||
</div>
|
||||
|
@@ -28,11 +28,11 @@ Year
|
||||
|
||||
{{< figure src="/ox-hugo/hauge04_stewart_platform.png" caption="<span class=\"figure-number\">Figure 1: </span>Hexapod for active vibration isolation" >}}
|
||||
|
||||
**Stewart platform** (Figure [1](#figure--fig:hauge04-stewart-platform)):
|
||||
**Stewart platform** ([Figure 1](#figure--fig:hauge04-stewart-platform)):
|
||||
|
||||
- Low corner frequency
|
||||
- Large actuator stroke (\\(\pm5mm\\))
|
||||
- Sensors in each strut (Figure [2](#figure--fig:hauge05-struts)):
|
||||
- Sensors in each strut ([Figure 2](#figure--fig:hauge05-struts)):
|
||||
- three-axis load cell
|
||||
- base and payload geophone in parallel with the struts
|
||||
- LVDT
|
||||
@@ -87,7 +87,7 @@ With \\(|T(\omega)|\\) is the Frobenius norm of the transmissibility matrix and
|
||||
|
||||
<a id="table--tab:hauge05-comp-load-cell-geophone"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:hauge05-comp-load-cell-geophone">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:hauge05-comp-load-cell-geophone">Table 1</a>:</span>
|
||||
Typical characteristics of sensors used for isolation in hexapod systems
|
||||
</div>
|
||||
|
||||
|
@@ -20,5 +20,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Holterman, J., and T.J.A. deVries. 2005. “Active Damping Based on Decoupled Collocated Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 10 (2): 135–45. doi:<a href="https://doi.org/10.1109/tmech.2005.844702">10.1109/tmech.2005.844702</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Holterman, J., and T.J.A. deVries. 2005. “Active Damping Based on Decoupled Collocated Control.” <i>IEEE/ASME Transactions on Mechatronics</i> 10 (2): 135–45. doi:<a href="https://doi.org/10.1109/tmech.2005.844702">10.1109/tmech.2005.844702</a>.</div>
|
||||
</div>
|
||||
|
@@ -20,7 +20,7 @@ Year
|
||||
## Classification of high-precision actuators {#classification-of-high-precision-actuators}
|
||||
|
||||
<div class="table-caption">
|
||||
<span class="table-number">Table 1</span>:
|
||||
<span class="table-number">Table 1:</span>
|
||||
Zero/Low and High stiffness actuators
|
||||
</div>
|
||||
|
||||
@@ -70,5 +70,5 @@ In contrast, the frequency band between the first and the other resonances of Lo
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>Ieee/Asme Transactions on Mechatronics</i> 21 (2): 1169–78. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>IEEE/ASME Transactions on Mechatronics</i> 21 (2): 1169–78. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
|
||||
</div>
|
||||
|
@@ -34,5 +34,5 @@ Example of generated isotropic manipulator (not decoupled).
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” <i>Mechanism and Machine Theory</i> 58 (nil): 64–81. doi:<a href="https://doi.org/10.1016/j.mechmachtheory.2012.07.008">10.1016/j.mechmachtheory.2012.07.008</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” <i>Mechanism and Machine Theory</i> 58: 64–81. doi:<a href="https://doi.org/10.1016/j.mechmachtheory.2012.07.008">10.1016/j.mechmachtheory.2012.07.008</a>.</div>
|
||||
</div>
|
||||
|
@@ -22,5 +22,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In <i>Smart Structures and Materials 2001: Smart Structures and Integrated Systems</i>, nil. doi:<a href="https://doi.org/10.1117/12.436521">10.1117/12.436521</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In <i>Smart Structures and Materials 2001: Smart Structures and Integrated Systems</i>. doi:<a href="https://doi.org/10.1117/12.436521">10.1117/12.436521</a>.</div>
|
||||
</div>
|
||||
|
@@ -21,5 +21,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” <i>Ieee Transactions on Robotics and Automation</i> 16 (4): 372–81. doi:<a href="https://doi.org/10.1109/70.864229">10.1109/70.864229</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” <i>IEEE Transactions on Robotics and Automation</i> 16 (4): 372–81. doi:<a href="https://doi.org/10.1109/70.864229">10.1109/70.864229</a>.</div>
|
||||
</div>
|
||||
|
@@ -40,11 +40,11 @@ This short paper is very similar to (<a href="#citeproc_bib_item_1">McInroy 1999
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy02_leg_model.png" caption="<span class=\"figure-number\">Figure 1: </span>The dynamics of the ith strut. A parallel spring, damper, and actautor drives the moving mass of the strut and a payload" >}}
|
||||
|
||||
The strut can be modeled as consisting of a parallel arrangement of an actuator force, a spring and some damping driving a mass (Figure [1](#figure--fig:mcinroy02-leg-model)).
|
||||
The strut can be modeled as consisting of a parallel arrangement of an actuator force, a spring and some damping driving a mass ([Figure 1](#figure--fig:mcinroy02-leg-model)).
|
||||
|
||||
Thus, **the strut does not output force directly, but rather outputs a mechanically filtered force**.
|
||||
|
||||
The model of the strut are shown in Figure [1](#figure--fig:mcinroy02-leg-model) with:
|
||||
The model of the strut are shown in [Figure 1](#figure--fig:mcinroy02-leg-model) with:
|
||||
|
||||
- \\(m\_{s\_i}\\) moving strut mass
|
||||
- \\(k\_i\\) spring constant
|
||||
@@ -136,12 +136,12 @@ This section establishes design guidelines for the spherical flexure joint to gu
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy02_model_strut_joint.png" caption="<span class=\"figure-number\">Figure 2: </span>A simplified dynamic model of a strut and its joint" >}}
|
||||
|
||||
Figure [2](#figure--fig:mcinroy02-model-strut-joint) depicts a strut, along with the corresponding force diagram.
|
||||
[Figure 2](#figure--fig:mcinroy02-model-strut-joint) depicts a strut, along with the corresponding force diagram.
|
||||
The force diagram is obtained using standard finite element assumptions (\\(\sin \theta \approx \theta\\)).
|
||||
Damping terms are neglected.
|
||||
\\(k\_r\\) denotes the rotational stiffness of the spherical joint.
|
||||
|
||||
From Figure [2](#figure--fig:mcinroy02-model-strut-joint) (b), Newton's second law yields:
|
||||
From [Figure 2](#figure--fig:mcinroy02-model-strut-joint) (b), Newton's second law yields:
|
||||
|
||||
\begin{equation}
|
||||
f\_p = \begin{bmatrix}
|
||||
@@ -269,6 +269,6 @@ By using the vector triple identity \\(a \cdot (b \times c) = b \cdot (c \times
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 Ieee International Conference on Control Applications (Cat. No.99ch36328)</i>, nil. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>Ieee/Asme Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)</i>. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>IEEE/ASME Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
</div>
|
||||
|
@@ -42,7 +42,7 @@ The actuators for FJHs can be divided into two categories:
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy99_general_hexapod.png" caption="<span class=\"figure-number\">Figure 1: </span>A general Stewart Platform" >}}
|
||||
|
||||
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in Figure [2](#figure--fig:mcinroy99-strut-model).
|
||||
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in [Figure 2](#figure--fig:mcinroy99-strut-model).
|
||||
|
||||
In order to provide low frequency passive vibration isolation, the hard actuators are sometimes placed in series with additional passive springs.
|
||||
|
||||
@@ -52,8 +52,8 @@ In order to provide low frequency passive vibration isolation, the hard actuator
|
||||
|
||||
<a id="table--tab:mcinroy99-strut-model"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:mcinroy99-strut-model">Table 1</a></span>:
|
||||
Definition of quantities on Figure <a href="#org84f1a50">2</a>
|
||||
<span class="table-number"><a href="#table--tab:mcinroy99-strut-model">Table 1</a>:</span>
|
||||
Definition of quantities on <a href="#orgffe7e8f">2</a>
|
||||
</div>
|
||||
|
||||
| **Symbol** | **Meaning** |
|
||||
@@ -74,7 +74,7 @@ It is here supposed that \\(f\_{p\_i}\\) is predominantly in the strut direction
|
||||
This is a good approximation unless the spherical joints and extremely stiff or massive, of high inertia struts are used.
|
||||
This allows to reduce considerably the complexity of the model.
|
||||
|
||||
From Figure [2](#figure--fig:mcinroy99-strut-model) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
|
||||
From [Figure 2](#figure--fig:mcinroy99-strut-model) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
|
||||
|
||||
\begin{equation}
|
||||
m\_i \hat{u}\_i^T \ddot{p}\_i = f\_{m\_i} - f\_{p\_i} - m\_i \hat{u}\_i^Tg - k\_i(l\_i - l\_{r\_i}) - b\_i \dot{l}\_i
|
||||
@@ -165,6 +165,6 @@ In the next section, a connection between the two will be found to complete the
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 Ieee International Conference on Control Applications (Cat. No.99ch36328)</i>, nil. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>Ieee/Asme Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)</i>. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>IEEE/ASME Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
</div>
|
||||
|
@@ -21,12 +21,12 @@ Year
|
||||
|
||||
Control of positioning systems is traditionally simplified by an excellent mechanical design.
|
||||
In particular, the mechanical design is such that the system is stiff and highly reproducible.
|
||||
In conjunction with moderate performance requirements, the control bandwidth is well-below the resonance frequency of the flexible mechanics as is shown in Figure [1](#figure--fig:oomen18-next-gen-loop-gain) (a).
|
||||
In conjunction with moderate performance requirements, the control bandwidth is well-below the resonance frequency of the flexible mechanics as is shown in [Figure 1](#figure--fig:oomen18-next-gen-loop-gain) (a).
|
||||
As a result, the system can often be completely **decoupled** in the frequency range relevant for control.
|
||||
Consequently, the control design is divided into well-manageable SISO control loops.
|
||||
|
||||
Although motion control design is well developed, presently available techniques mainly apply to positioning systems that behave as a rigid body in the relevant frequency range.
|
||||
On one hand, increasing performance requirements hamper the validity of this assumption, since the bandwidth has to increase, leading to flexible dynamics in the cross-over region, see Figure [1](#figure--fig:oomen18-next-gen-loop-gain) (b).
|
||||
On one hand, increasing performance requirements hamper the validity of this assumption, since the bandwidth has to increase, leading to flexible dynamics in the cross-over region, see [Figure 1](#figure--fig:oomen18-next-gen-loop-gain) (b).
|
||||
|
||||
<a id="figure--fig:oomen18-next-gen-loop-gain"></a>
|
||||
|
||||
@@ -55,7 +55,7 @@ In this case, matrices \\(T\_u\\) and \\(T\_y\\) can be selected such that:
|
||||
G = T\_y G\_m T\_u = \frac{1}{s^2} I\_{n\_{RB}} + G\_{\text{flex}}
|
||||
\end{equation}
|
||||
|
||||
A tradition motion control architecture is shown in Figure [2](#figure--fig:oomen18-control-architecture).
|
||||
A tradition motion control architecture is shown in [Figure 2](#figure--fig:oomen18-control-architecture).
|
||||
|
||||
<a id="figure--fig:oomen18-control-architecture"></a>
|
||||
|
||||
@@ -119,7 +119,7 @@ This leads to several challenges for motion control design:
|
||||
|
||||
A generalized plant framework allows for a systematic way to address the future challenges in advanced motion control.
|
||||
|
||||
The generalized plant is depicted in Figure [3](#figure--fig:oomen18-generalized-plant):
|
||||
The generalized plant is depicted in [Figure 3](#figure--fig:oomen18-generalized-plant):
|
||||
|
||||
- \\(z\\) are the performance variables
|
||||
- \\(y\\) and \\(u\\) are the measured variables and measured variables, respectively
|
||||
@@ -180,8 +180,6 @@ This motivates a robust control design, where the **model quality is explicitly
|
||||
|
||||
## Feedforward and learning {#feedforward-and-learning}
|
||||
|
||||
## References
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Oomen, Tom. 2018. “Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems.” <i>Ieej Journal of Industry Applications</i> 7 (2): 127–40. doi:<a href="https://doi.org/10.1541/ieejjia.7.127">10.1541/ieejjia.7.127</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Oomen, Tom. 2018. “Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems.” <i>IEEJ Journal of Industry Applications</i> 7 (2): 127–40. doi:<a href="https://doi.org/10.1541/ieejjia.7.127">10.1541/ieejjia.7.127</a>.</div>
|
||||
</div>
|
||||
|
@@ -26,8 +26,8 @@ The force applied to a **rigid body** is proportional to its acceleration, thus
|
||||
Thus force feedback and acceleration feedback are equivalent for solid bodies.
|
||||
When there is a flexible payload, the two sensing options are not longer equivalent.
|
||||
|
||||
- For light payload (Figure [1](#figure--fig:preumont02-force-acc-fb-light)), the acceleration feedback gives larger damping on the higher mode.
|
||||
- For heavy payload (Figure [2](#figure--fig:preumont02-force-acc-fb-heavy)), the acceleration feedback do not give alternating poles and zeros and thus for high control gains, the system becomes unstable
|
||||
- For light payload ([Figure 1](#figure--fig:preumont02-force-acc-fb-light)), the acceleration feedback gives larger damping on the higher mode.
|
||||
- For heavy payload ([Figure 2](#figure--fig:preumont02-force-acc-fb-heavy)), the acceleration feedback do not give alternating poles and zeros and thus for high control gains, the system becomes unstable
|
||||
|
||||
<a id="figure--fig:preumont02-force-acc-fb-light"></a>
|
||||
|
||||
|
@@ -18,15 +18,15 @@ Year
|
||||
|
||||
Summary:
|
||||
|
||||
- **Cubic** Stewart platform (Figure [3](#figure--fig:preumont07-stewart-platform))
|
||||
- **Cubic** Stewart platform ([Figure 3](#figure--fig:preumont07-stewart-platform))
|
||||
- Provides uniform control capability
|
||||
- Uniform stiffness in all directions
|
||||
- minimizes the cross-coupling among actuators and sensors of different legs
|
||||
- Flexible joints (Figure [2](#figure--fig:preumont07-flexible-joints))
|
||||
- Flexible joints ([Figure 2](#figure--fig:preumont07-flexible-joints))
|
||||
- Piezoelectric force sensors
|
||||
- Voice coil actuators
|
||||
- Decentralized feedback control approach for vibration isolation
|
||||
- Effect of parasitic stiffness of the flexible joints on the IFF performance (Figure [1](#figure--fig:preumont07-iff-effect-stiffness))
|
||||
- Effect of parasitic stiffness of the flexible joints on the IFF performance ([Figure 1](#figure--fig:preumont07-iff-effect-stiffness))
|
||||
- The Stewart platform has 6 suspension modes at different frequencies.
|
||||
Thus the gain of the IFF controller cannot be optimal for all the modes.
|
||||
It is better if all the modes of the platform are near to each other.
|
||||
|
@@ -88,5 +88,5 @@ The interesting feature regarding IMC is that the design scheme is identical to
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Saxena, Sahaj, and YogeshV Hote. 2012. “Advances in Internal Model Control Technique: A Review and Future Prospects.” <i>Iete Technical Review</i> 29 (6): 461. doi:<a href="https://doi.org/10.4103/0256-4602.105001">10.4103/0256-4602.105001</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Saxena, Sahaj, and YogeshV Hote. 2012. “Advances in Internal Model Control Technique: A Review and Future Prospects.” <i>IETE Technical Review</i> 29 (6): 461. doi:<a href="https://doi.org/10.4103/0256-4602.105001">10.4103/0256-4602.105001</a>.</div>
|
||||
</div>
|
||||
|
@@ -21,5 +21,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Schroeck, S.J., W.C. Messner, and R.J. McNab. 2001. “On Compensator Design for Linear Time-Invariant Dual-Input Single-Output Systems.” <i>Ieee/Asme Transactions on Mechatronics</i> 6 (1): 50–57. doi:<a href="https://doi.org/10.1109/3516.914391">10.1109/3516.914391</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Schroeck, S.J., W.C. Messner, and R.J. McNab. 2001. “On Compensator Design for Linear Time-Invariant Dual-Input Single-Output Systems.” <i>IEEE/ASME Transactions on Mechatronics</i> 6 (1): 50–57. doi:<a href="https://doi.org/10.1109/3516.914391">10.1109/3516.914391</a>.</div>
|
||||
</div>
|
||||
|
@@ -20,5 +20,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Sebastian, Abu, and Angeliki Pantazi. 2012. “Nanopositioning with Multiple Sensors: A Case Study in Data Storage.” <i>Ieee Transactions on Control Systems Technology</i> 20 (2): 382–94. doi:<a href="https://doi.org/10.1109/tcst.2011.2177982">10.1109/tcst.2011.2177982</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Sebastian, Abu, and Angeliki Pantazi. 2012. “Nanopositioning with Multiple Sensors: A Case Study in Data Storage.” <i>IEEE Transactions on Control Systems Technology</i> 20 (2): 382–94. doi:<a href="https://doi.org/10.1109/tcst.2011.2177982">10.1109/tcst.2011.2177982</a>.</div>
|
||||
</div>
|
||||
|
@@ -23,7 +23,7 @@ This article discusses the use of Integral Force Feedback with amplified piezoel
|
||||
|
||||
## Single degree-of-freedom isolator {#single-degree-of-freedom-isolator}
|
||||
|
||||
Figure [1](#figure--fig:souleille18-model-piezo) shows a picture of the amplified piezoelectric stack.
|
||||
[Figure 1](#figure--fig:souleille18-model-piezo) shows a picture of the amplified piezoelectric stack.
|
||||
The piezoelectric actuator is divided into two parts: one is used as an actuator, and the other one is used as a force sensor.
|
||||
|
||||
<a id="figure--fig:souleille18-model-piezo"></a>
|
||||
@@ -31,7 +31,7 @@ The piezoelectric actuator is divided into two parts: one is used as an actuator
|
||||
{{< figure src="/ox-hugo/souleille18_model_piezo.png" caption="<span class=\"figure-number\">Figure 1: </span>Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator" >}}
|
||||
|
||||
<div class="table-caption">
|
||||
<span class="table-number">Table 1</span>:
|
||||
<span class="table-number">Table 1:</span>
|
||||
Parameters used for the model of the APA 100M
|
||||
</div>
|
||||
|
||||
@@ -61,7 +61,7 @@ and the control force is given by:
|
||||
f = F\_s G(s) = F\_s \frac{g}{s}
|
||||
\end{equation}
|
||||
|
||||
The effect of the controller are shown in Figure [2](#figure--fig:souleille18-tf-iff-result):
|
||||
The effect of the controller are shown in [Figure 2](#figure--fig:souleille18-tf-iff-result):
|
||||
|
||||
- the resonance peak is almost critically damped
|
||||
- the passive isolation \\(\frac{x\_1}{w}\\) is not degraded at high frequencies
|
||||
@@ -79,14 +79,14 @@ The effect of the controller are shown in Figure [2](#figure--fig:souleille18-tf
|
||||
|
||||
## Flexible payload mounted on three isolators {#flexible-payload-mounted-on-three-isolators}
|
||||
|
||||
A heavy payload is mounted on a set of three isolators (Figure [4](#figure--fig:souleille18-setup-flexible-payload)).
|
||||
A heavy payload is mounted on a set of three isolators ([Figure 4](#figure--fig:souleille18-setup-flexible-payload)).
|
||||
The payload consists of two masses, connected through flexible blades such that the flexible resonance of the payload in the vertical direction is around 65Hz.
|
||||
|
||||
<a id="figure--fig:souleille18-setup-flexible-payload"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/souleille18_setup_flexible_payload.png" caption="<span class=\"figure-number\">Figure 4: </span>Right: picture of the experimental setup. It consists of a flexible payload mounted on a set of three isolators. Left: simplified sketch of the setup, showing only the vertical direction" >}}
|
||||
|
||||
As shown in Figure [5](#figure--fig:souleille18-result-damping-transmissibility), both the suspension modes and the flexible modes of the payload can be critically damped.
|
||||
As shown in [Figure 5](#figure--fig:souleille18-result-damping-transmissibility), both the suspension modes and the flexible modes of the payload can be critically damped.
|
||||
|
||||
<a id="figure--fig:souleille18-result-damping-transmissibility"></a>
|
||||
|
||||
@@ -96,5 +96,5 @@ As shown in Figure [5](#figure--fig:souleille18-result-damping-transmissibility)
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Souleille, Adrien, Thibault Lampert, V Lafarga, Sylvain Hellegouarch, Alan Rondineau, Gonçalo Rodrigues, and Christophe Collette. 2018. “A Concept of Active Mount for Space Applications.” <i>Ceas Space Journal</i> 10 (2). Springer: 157–65.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Souleille, Adrien, Thibault Lampert, V Lafarga, Sylvain Hellegouarch, Alan Rondineau, Gonçalo Rodrigues, and Christophe Collette. 2018. “A Concept of Active Mount for Space Applications.” <i>CEAS Space Journal</i> 10 (2). Springer: 157–65.</div>
|
||||
</div>
|
||||
|
@@ -16,7 +16,7 @@ Author(s)
|
||||
Year
|
||||
: 1995
|
||||
|
||||
**Stewart Platform** (Figure [1](#figure--fig:spanos95-stewart-platform)):
|
||||
**Stewart Platform** ([Figure 1](#figure--fig:spanos95-stewart-platform)):
|
||||
|
||||
- Voice Coil
|
||||
- Flexible joints (cross-blades)
|
||||
@@ -52,7 +52,7 @@ The controller used consisted of:
|
||||
- first order lag filter to provide adequate phase margin at the low frequency crossover
|
||||
- a first order high pass filter to attenuate the excess gain resulting from the low frequency zero
|
||||
|
||||
The results in terms of transmissibility are shown in Figure [3](#figure--fig:spanos95-results).
|
||||
The results in terms of transmissibility are shown in [Figure 3](#figure--fig:spanos95-results).
|
||||
|
||||
<a id="figure--fig:spanos95-results"></a>
|
||||
|
||||
@@ -62,5 +62,5 @@ The results in terms of transmissibility are shown in Figure [3](#figure--fig:sp
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In <i>Proceedings of 1995 American Control Conference - Acc’95</i>, nil. doi:<a href="https://doi.org/10.1109/acc.1995.529280">10.1109/acc.1995.529280</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In <i>Proceedings of 1995 American Control Conference - ACC’95</i>. doi:<a href="https://doi.org/10.1109/acc.1995.529280">10.1109/acc.1995.529280</a>.</div>
|
||||
</div>
|
||||
|
@@ -35,7 +35,7 @@ Combines:
|
||||
- the FxLMS-based adaptive inverse control => suppress transmission of periodic vibrations
|
||||
- direct feedback of integrated forces => dampen vibration of inherent modes and thus reduce random vibrations
|
||||
|
||||
Force Feedback (Figure [2](#figure--fig:wang16-force-feedback)).
|
||||
Force Feedback ([Figure 2](#figure--fig:wang16-force-feedback)).
|
||||
|
||||
- the force sensor is mounted **between the base and the strut**
|
||||
|
||||
|
@@ -25,10 +25,10 @@ Year
|
||||
The joint stiffness impose a limitation on the control performance using force sensors as it adds a zero at low frequency in the dynamics.
|
||||
Thus, this stiffness is taken into account in the dynamics and compensated for.
|
||||
|
||||
**Stewart platform** (Figure [1](#figure--fig:yang19-stewart-platform)):
|
||||
**Stewart platform** ([Figure 1](#figure--fig:yang19-stewart-platform)):
|
||||
|
||||
- piezoelectric actuators
|
||||
- flexible joints (Figure [2](#figure--fig:yang19-flexible-joints))
|
||||
- flexible joints ([Figure 2](#figure--fig:yang19-flexible-joints))
|
||||
- force sensors (used for vibration isolation)
|
||||
- displacement sensors (used to decouple the dynamics)
|
||||
- cubic (even though not said explicitly)
|
||||
@@ -41,11 +41,11 @@ Thus, this stiffness is taken into account in the dynamics and compensated for.
|
||||
|
||||
{{< figure src="/ox-hugo/yang19_flexible_joints.png" caption="<span class=\"figure-number\">Figure 2: </span>Flexible Joints" >}}
|
||||
|
||||
The stiffness of the flexible joints (Figure [2](#figure--fig:yang19-flexible-joints)) are computed with an FEM model and shown in Table [1](#table--tab:yang19-stiffness-flexible-joints).
|
||||
The stiffness of the flexible joints ([Figure 2](#figure--fig:yang19-flexible-joints)) are computed with an FEM model and shown in [Table 1](#table--tab:yang19-stiffness-flexible-joints).
|
||||
|
||||
<a id="table--tab:yang19-stiffness-flexible-joints"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:yang19-stiffness-flexible-joints">Table 1</a></span>:
|
||||
<span class="table-number"><a href="#table--tab:yang19-stiffness-flexible-joints">Table 1</a>:</span>
|
||||
Stiffness of flexible joints obtained by FEM
|
||||
</div>
|
||||
|
||||
@@ -105,7 +105,7 @@ In order to apply this control strategy:
|
||||
- The jacobian has to be computed
|
||||
- No information about modal matrix is needed
|
||||
|
||||
The block diagram of the control strategy is represented in Figure [3](#figure--fig:yang19-control-arch).
|
||||
The block diagram of the control strategy is represented in [Figure 3](#figure--fig:yang19-control-arch).
|
||||
|
||||
<a id="figure--fig:yang19-control-arch"></a>
|
||||
|
||||
@@ -121,7 +121,7 @@ Substituting \\(H(s)\\) in the equation of motion gives that:
|
||||
|
||||
**Experimental Validation**:
|
||||
An external Shaker is used to excite the base and accelerometers are located on the base and mobile platforms to measure their motion.
|
||||
The results are shown in Figure [4](#figure--fig:yang19-results).
|
||||
The results are shown in [Figure 4](#figure--fig:yang19-results).
|
||||
In theory, the vibration performance can be improved, however in practice, increasing the gain causes saturation of the piezoelectric actuators and then the instability occurs.
|
||||
|
||||
<a id="figure--fig:yang19-results"></a>
|
||||
|
@@ -21,5 +21,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Yun, Hai, Lei Liu, Qing Li, and Hongjie Yang. 2020. “Investigation on Two-Stage Vibration Suppression and Precision Pointing for Space Optical Payloads.” <i>Aerospace Science and Technology</i> 96 (nil): 105543. doi:<a href="https://doi.org/10.1016/j.ast.2019.105543">10.1016/j.ast.2019.105543</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Yun, Hai, Lei Liu, Qing Li, and Hongjie Yang. 2020. “Investigation on Two-Stage Vibration Suppression and Precision Pointing for Space Optical Payloads.” <i>Aerospace Science and Technology</i> 96: 105543. doi:<a href="https://doi.org/10.1016/j.ast.2019.105543">10.1016/j.ast.2019.105543</a>.</div>
|
||||
</div>
|
||||
|
@@ -33,5 +33,5 @@ Year
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Zhang, Zhen, J Liu, Jq Mao, Yx Guo, and Yh Ma. 2011. “Six Dof Active Vibration Control Using Stewart Platform with Non-Cubic Configuration.” In <i>2011 6th Ieee Conference on Industrial Electronics and Applications</i>, nil. doi:<a href="https://doi.org/10.1109/iciea.2011.5975679">10.1109/iciea.2011.5975679</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Zhang, Zhen, J Liu, Jq Mao, Yx Guo, and Yh Ma. 2011. “Six DOF Active Vibration Control Using Stewart Platform with Non-Cubic Configuration.” In <i>2011 6th IEEE Conference on Industrial Electronics and Applications</i>. doi:<a href="https://doi.org/10.1109/iciea.2011.5975679">10.1109/iciea.2011.5975679</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user