Update Content - 2021-05-30

This commit is contained in:
2021-05-30 19:15:14 +02:00
parent 772483b405
commit 4c096a392a
19 changed files with 848 additions and 863 deletions

View File

@@ -1,15 +1,16 @@
+++
title = "Design, modeling and control of nanopositioning systems"
author = ["Thomas Dehaeze"]
draft = true
description = "Talks about various topics related to nano-positioning systems."
keywords = ["Control", "Metrology", "Flexible Joints"]
draft = false
+++
Tags
:
: [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Flexible Joints]({{< relref "flexible_joints" >}})
Reference
: ([Fleming and Leang 2014](#org6bfb955))
: ([Fleming and Leang 2014](#org9f0983e))
Author(s)
: Fleming, A. J., & Leang, K. K.
@@ -18,523 +19,484 @@ Year
: 2014
## 1 Introduction {#1-introduction}
## Introduction {#introduction}
### 1.1 Introduction to Nanotechnology {#1-dot-1-introduction-to-nanotechnology}
### Introduction to Nanotechnology {#introduction-to-nanotechnology}
### 1.2 Introduction to Nanopositioning {#1-dot-2-introduction-to-nanopositioning}
### Introduction to Nanopositioning {#introduction-to-nanopositioning}
### 1.3 Scanning Probe Microscopy {#1-dot-3-scanning-probe-microscopy}
### Scanning Probe Microscopy {#scanning-probe-microscopy}
### 1.4 Challenges with Nanopositioning Systems {#1-dot-4-challenges-with-nanopositioning-systems}
### Challenges with Nanopositioning Systems {#challenges-with-nanopositioning-systems}
#### 1.4.1 Hysteresis {#1-dot-4-dot-1-hysteresis}
#### Hysteresis {#hysteresis}
#### 1.4.2 Creep {#1-dot-4-dot-2-creep}
#### Creep {#creep}
#### 1.4.3 Thermal Drift {#1-dot-4-dot-3-thermal-drift}
#### Thermal Drift {#thermal-drift}
#### 1.4.4 Mechanical Resonance {#1-dot-4-dot-4-mechanical-resonance}
#### Mechanical Resonance {#mechanical-resonance}
### 1.5 Control of Nanopositioning Systems {#1-dot-5-control-of-nanopositioning-systems}
### Control of Nanopositioning Systems {#control-of-nanopositioning-systems}
#### 1.5.1 Feedback Control {#1-dot-5-dot-1-feedback-control}
#### Feedback Control {#feedback-control}
#### 1.5.2 Feedforward Control {#1-dot-5-dot-2-feedforward-control}
#### Feedforward Control {#feedforward-control}
### 1.6 Book Summary {#1-dot-6-book-summary}
### Book Summary {#book-summary}
#### 1.6.1 Assumed Knowledge {#1-dot-6-dot-1-assumed-knowledge}
#### Assumed Knowledge {#assumed-knowledge}
#### 1.6.2 Content Summary {#1-dot-6-dot-2-content-summary}
#### Content Summary {#content-summary}
### References {#references}
## 2 Piezoelectric Transducers {#2-piezoelectric-transducers}
## Piezoelectric Transducers {#piezoelectric-transducers}
### 2.1 The Piezoelectric Effect {#2-dot-1-the-piezoelectric-effect}
### The Piezoelectric Effect {#the-piezoelectric-effect}
### 2.2 Piezoelectric Compositions {#2-dot-2-piezoelectric-compositions}
### Piezoelectric Compositions {#piezoelectric-compositions}
### 2.3 Manufacturing Piezoelectric Ceramics {#2-dot-3-manufacturing-piezoelectric-ceramics}
### Manufacturing Piezoelectric Ceramics {#manufacturing-piezoelectric-ceramics}
### 2.4 Piezoelectric Transducers {#2-dot-4-piezoelectric-transducers}
### Piezoelectric Transducers {#piezoelectric-transducers}
### 2.5 Application Considerations {#2-dot-5-application-considerations}
### Application Considerations {#application-considerations}
#### 2.5.1 Mounting {#2-dot-5-dot-1-mounting}
### Response of Piezoelectric Actuators {#response-of-piezoelectric-actuators}
#### 2.5.2 Stroke Versus Force {#2-dot-5-dot-2-stroke-versus-force}
### Modeling Creep and Vibration in Piezoelectric Actuators {#modeling-creep-and-vibration-in-piezoelectric-actuators}
#### 2.5.3 Preload and Flexures {#2-dot-5-dot-3-preload-and-flexures}
#### 2.5.4 Electrical Considerations {#2-dot-5-dot-4-electrical-considerations}
#### 2.5.5 Self-Heating Considerations {#2-dot-5-dot-5-self-heating-considerations}
### 2.6 Response of Piezoelectric Actuators {#2-dot-6-response-of-piezoelectric-actuators}
#### 2.6.1 Hysteresis {#2-dot-6-dot-1-hysteresis}
#### 2.6.2 Creep {#2-dot-6-dot-2-creep}
#### 2.6.3 Temperature Dependence {#2-dot-6-dot-3-temperature-dependence}
#### 2.6.4 Vibrational Dynamics {#2-dot-6-dot-4-vibrational-dynamics}
#### 2.6.5 Electrical Bandwidth {#2-dot-6-dot-5-electrical-bandwidth}
### 2.7 Modeling Creep and Vibration in Piezoelectric Actuators {#2-dot-7-modeling-creep-and-vibration-in-piezoelectric-actuators}
### 2.8 Chapter Summary {#2-dot-8-chapter-summary}
### Chapter Summary {#chapter-summary}
### References {#references}
## 3 Types of Nanopositioners {#3-types-of-nanopositioners}
## Types of Nanopositioners {#types-of-nanopositioners}
### 3.1 Piezoelectric Tube Nanopositioners {#3-dot-1-piezoelectric-tube-nanopositioners}
### Piezoelectric Tube Nanopositioners {#piezoelectric-tube-nanopositioners}
#### 3.1.1 63mm Piezoelectric Tube {#3-dot-1-dot-1-63mm-piezoelectric-tube}
#### 63mm Piezoelectric Tube {#63mm-piezoelectric-tube}
#### 3.1.2 40mm Piezoelectric Tube Nanopositioner {#3-dot-1-dot-2-40mm-piezoelectric-tube-nanopositioner}
#### 40mm Piezoelectric Tube Nanopositioner {#40mm-piezoelectric-tube-nanopositioner}
### 3.2 Piezoelectric Stack Nanopositioners {#3-dot-2-piezoelectric-stack-nanopositioners}
### Piezoelectric Stack Nanopositioners {#piezoelectric-stack-nanopositioners}
#### 3.2.1 Phyisk Instrumente P-734 Nanopositioner {#3-dot-2-dot-1-phyisk-instrumente-p-734-nanopositioner}
#### Phyisk Instrumente P-734 Nanopositioner {#phyisk-instrumente-p-734-nanopositioner}
#### 3.2.2 Phyisk Instrumente P-733.3DD Nanopositioner {#3-dot-2-dot-2-phyisk-instrumente-p-733-dot-3dd-nanopositioner}
#### Phyisk Instrumente P-733.3DD Nanopositioner {#phyisk-instrumente-p-733-dot-3dd-nanopositioner}
#### 3.2.3 Vertical Nanopositioners {#3-dot-2-dot-3-vertical-nanopositioners}
#### Vertical Nanopositioners {#vertical-nanopositioners}
#### 3.2.4 Rotational Nanopositioners {#3-dot-2-dot-4-rotational-nanopositioners}
#### Rotational Nanopositioners {#rotational-nanopositioners}
#### 3.2.5 Low Temperature and UHV Nanopositioners {#3-dot-2-dot-5-low-temperature-and-uhv-nanopositioners}
#### Low Temperature and UHV Nanopositioners {#low-temperature-and-uhv-nanopositioners}
#### 3.2.6 Tilting Nanopositioners {#3-dot-2-dot-6-tilting-nanopositioners}
#### Tilting Nanopositioners {#tilting-nanopositioners}
#### 3.2.7 Optical Objective Nanopositioners {#3-dot-2-dot-7-optical-objective-nanopositioners}
#### Optical Objective Nanopositioners {#optical-objective-nanopositioners}
### References {#references}
## 4 Mechanical Design: Flexure-Based Nanopositioners {#4-mechanical-design-flexure-based-nanopositioners}
## Mechanical Design: Flexure-Based Nanopositioners {#mechanical-design-flexure-based-nanopositioners}
### 4.1 Introduction {#4-dot-1-introduction}
### Introduction {#introduction}
### 4.2 Operating Environment {#4-dot-2-operating-environment}
### Operating Environment {#operating-environment}
### 4.3 Methods for Actuation {#4-dot-3-methods-for-actuation}
### Methods for Actuation {#methods-for-actuation}
### 4.4 Flexure Hinges {#4-dot-4-flexure-hinges}
### Flexure Hinges {#flexure-hinges}
#### 4.4.1 Introduction {#4-dot-4-dot-1-introduction}
#### Introduction {#introduction}
#### 4.4.2 Types of Flexures {#4-dot-4-dot-2-types-of-flexures}
#### Types of Flexures {#types-of-flexures}
#### 4.4.3 Flexure Hinge Compliance Equations {#4-dot-4-dot-3-flexure-hinge-compliance-equations}
#### Flexure Hinge Compliance Equations {#flexure-hinge-compliance-equations}
#### 4.4.4 Stiff Out-of-Plane Flexure Designs {#4-dot-4-dot-4-stiff-out-of-plane-flexure-designs}
#### Stiff Out-of-Plane Flexure Designs {#stiff-out-of-plane-flexure-designs}
#### 4.4.5 Failure Considerations {#4-dot-4-dot-5-failure-considerations}
#### Failure Considerations {#failure-considerations}
#### 4.4.6 Finite Element Approach for Flexure Design {#4-dot-4-dot-6-finite-element-approach-for-flexure-design}
#### Finite Element Approach for Flexure Design {#finite-element-approach-for-flexure-design}
### 4.5 Material Considerations {#4-dot-5-material-considerations}
### Material Considerations {#material-considerations}
#### 4.5.1 Materials for Flexure and Platform Design {#4-dot-5-dot-1-materials-for-flexure-and-platform-design}
#### Materials for Flexure and Platform Design {#materials-for-flexure-and-platform-design}
#### 4.5.2 Thermal Stability of Materials {#4-dot-5-dot-2-thermal-stability-of-materials}
#### Thermal Stability of Materials {#thermal-stability-of-materials}
### 4.6 Manufacturing Techniques {#4-dot-6-manufacturing-techniques}
### Manufacturing Techniques {#manufacturing-techniques}
### 4.7 Design Example: A High-Speed Serial-Kinematic Nanopositioner {#4-dot-7-design-example-a-high-speed-serial-kinematic-nanopositioner}
### Design Example: A High-Speed Serial-Kinematic Nanopositioner {#design-example-a-high-speed-serial-kinematic-nanopositioner}
#### 4.7.1 State-of-the-Art Designs {#4-dot-7-dot-1-state-of-the-art-designs}
#### State-of-the-Art Designs {#state-of-the-art-designs}
#### 4.7.2 Tradeoffs and Limitations in Speed {#4-dot-7-dot-2-tradeoffs-and-limitations-in-speed}
#### Tradeoffs and Limitations in Speed {#tradeoffs-and-limitations-in-speed}
#### 4.7.3 Serial- Versus Parallel-Kinematic Configurations {#4-dot-7-dot-3-serial-versus-parallel-kinematic-configurations}
#### Serial- Versus Parallel-Kinematic Configurations {#serial-versus-parallel-kinematic-configurations}
#### 4.7.4 Piezoactuator Considerations {#4-dot-7-dot-4-piezoactuator-considerations}
#### Piezoactuator Considerations {#piezoactuator-considerations}
#### 4.7.5 Preloading Piezo-Stack Actuators {#4-dot-7-dot-5-preloading-piezo-stack-actuators}
#### Preloading Piezo-Stack Actuators {#preloading-piezo-stack-actuators}
#### 4.7.6 Flexure Design for Lateral Positioning {#4-dot-7-dot-6-flexure-design-for-lateral-positioning}
#### Flexure Design for Lateral Positioning {#flexure-design-for-lateral-positioning}
#### 4.7.7 Design of Vertical Stage {#4-dot-7-dot-7-design-of-vertical-stage}
#### Design of Vertical Stage {#design-of-vertical-stage}
#### 4.7.8 Fabrication and Assembly {#4-dot-7-dot-8-fabrication-and-assembly}
#### Fabrication and Assembly {#fabrication-and-assembly}
#### 4.7.9 Drive Electronics {#4-dot-7-dot-9-drive-electronics}
#### Drive Electronics {#drive-electronics}
\*\*\*\*0 Experimental Results
#### 4.7.10 Experimental Results {#4-dot-7-dot-10-experimental-results}
### 4.8 Chapter Summary {#4-dot-8-chapter-summary}
### Chapter Summary {#chapter-summary}
### References {#references}
## 5 Position Sensors {#5-position-sensors}
## Position Sensors {#position-sensors}
### 5.1 Introduction {#5-dot-1-introduction}
### Introduction {#introduction}
### 5.2 Sensor Characteristics {#5-dot-2-sensor-characteristics}
### Sensor Characteristics {#sensor-characteristics}
#### 5.2.1 Calibration and Nonlinearity {#5-dot-2-dot-1-calibration-and-nonlinearity}
#### Calibration and Nonlinearity {#calibration-and-nonlinearity}
#### 5.2.2 Drift and Stability {#5-dot-2-dot-2-drift-and-stability}
#### Drift and Stability {#drift-and-stability}
#### 5.2.3 Bandwidth {#5-dot-2-dot-3-bandwidth}
#### Bandwidth {#bandwidth}
#### 5.2.4 Noise {#5-dot-2-dot-4-noise}
#### Noise {#noise}
#### 5.2.5 Resolution {#5-dot-2-dot-5-resolution}
#### Resolution {#resolution}
#### 5.2.6 Combining Errors {#5-dot-2-dot-6-combining-errors}
#### Combining Errors {#combining-errors}
#### 5.2.7 Metrological Traceability {#5-dot-2-dot-7-metrological-traceability}
#### Metrological Traceability {#metrological-traceability}
### 5.3 Nanometer Position Sensors {#5-dot-3-nanometer-position-sensors}
### Nanometer Position Sensors {#nanometer-position-sensors}
#### 5.3.1 Resistive Strain Sensors {#5-dot-3-dot-1-resistive-strain-sensors}
#### Resistive Strain Sensors {#resistive-strain-sensors}
#### 5.3.2 Piezoresistive Strain Sensors {#5-dot-3-dot-2-piezoresistive-strain-sensors}
#### Piezoresistive Strain Sensors {#piezoresistive-strain-sensors}
#### 5.3.3 Piezoelectric Strain Sensors {#5-dot-3-dot-3-piezoelectric-strain-sensors}
#### Piezoelectric Strain Sensors {#piezoelectric-strain-sensors}
#### 5.3.4 Capacitive Sensors {#5-dot-3-dot-4-capacitive-sensors}
#### Capacitive Sensors {#capacitive-sensors}
#### 5.3.5 MEMs Capacitive and Thermal Sensors {#5-dot-3-dot-5-mems-capacitive-and-thermal-sensors}
#### MEMs Capacitive and Thermal Sensors {#mems-capacitive-and-thermal-sensors}
#### 5.3.6 Eddy-Current Sensors {#5-dot-3-dot-6-eddy-current-sensors}
#### Eddy-Current Sensors {#eddy-current-sensors}
#### 5.3.7 Linear Variable Displacement Transformers {#5-dot-3-dot-7-linear-variable-displacement-transformers}
#### Linear Variable Displacement Transformers {#linear-variable-displacement-transformers}
#### 5.3.8 Laser Interferometers {#5-dot-3-dot-8-laser-interferometers}
#### Laser Interferometers {#laser-interferometers}
#### 5.3.9 Linear Encoders {#5-dot-3-dot-9-linear-encoders}
#### Linear Encoders {#linear-encoders}
### 5.4 Comparison and Summary {#5-dot-4-comparison-and-summary}
### Comparison and Summary {#comparison-and-summary}
### 5.5 Outlook and Future Requirements {#5-dot-5-outlook-and-future-requirements}
### Outlook and Future Requirements {#outlook-and-future-requirements}
### References {#references}
## 6 Shunt Control {#6-shunt-control}
## Shunt Control {#shunt-control}
### 6.1 Introduction {#6-dot-1-introduction}
### Introduction {#introduction}
### 6.2 Shunt Circuit Modeling {#6-dot-2-shunt-circuit-modeling}
### Shunt Circuit Modeling {#shunt-circuit-modeling}
#### 6.2.1 Open-Loop {#6-dot-2-dot-1-open-loop}
#### Open-Loop {#open-loop}
#### 6.2.2 Shunt Damping {#6-dot-2-dot-2-shunt-damping}
#### Shunt Damping {#shunt-damping}
### 6.3 Implementation {#6-dot-3-implementation}
### Implementation {#implementation}
### 6.4 Experimental Results {#6-dot-4-experimental-results}
### Experimental Results {#experimental-results}
#### 6.4.1 Tube Dynamics {#6-dot-4-dot-1-tube-dynamics}
#### Tube Dynamics {#tube-dynamics}
#### 6.4.2 Amplifier Performance {#6-dot-4-dot-2-amplifier-performance}
#### Amplifier Performance {#amplifier-performance}
#### 6.4.3 Shunt Damping Performance {#6-dot-4-dot-3-shunt-damping-performance}
#### Shunt Damping Performance {#shunt-damping-performance}
### 6.5 Chapter Summary {#6-dot-5-chapter-summary}
### Chapter Summary {#chapter-summary}
### References {#references}
## 7 Feedback Control {#7-feedback-control}
## Feedback Control {#feedback-control}
### 7.1 Introduction {#7-dot-1-introduction}
### Introduction {#introduction}
### 7.2 Experimental Setup {#7-dot-2-experimental-setup}
### Experimental Setup {#experimental-setup}
### 7.3 PI Control {#7-dot-3-pi-control}
### PI Control {#pi-control}
### 7.4 PI Control with Notch Filters {#7-dot-4-pi-control-with-notch-filters}
### PI Control with Notch Filters {#pi-control-with-notch-filters}
### 7.5 PI Control with IRC Damping {#7-dot-5-pi-control-with-irc-damping}
### PI Control with IRC Damping {#pi-control-with-irc-damping}
### 7.6 Performance Comparison {#7-dot-6-performance-comparison}
### Performance Comparison {#performance-comparison}
### 7.7 Noise and Resolution {#7-dot-7-noise-and-resolution}
### Noise and Resolution {#noise-and-resolution}
### 7.8 Analog Implementation {#7-dot-8-analog-implementation}
### Analog Implementation {#analog-implementation}
### 7.9 Application to AFM Imaging {#7-dot-9-application-to-afm-imaging}
### Application to AFM Imaging {#application-to-afm-imaging}
\*\*\*0 Repetitive Control
### 7.10 Repetitive Control {#7-dot-10-repetitive-control}
\*\*\*\*0.1 Introduction
\*\*\*\*0.2 Repetitive Control Concept and Stability Considerations
#### 7.10.1 Introduction {#7-dot-10-dot-1-introduction}
\*\*\*\*0.3 Dual-Stage Repetitive Control
\*\*\*\*0.4 Handling Hysteresis
#### 7.10.2 Repetitive Control Concept and Stability Considerations {#7-dot-10-dot-2-repetitive-control-concept-and-stability-considerations}
\*\*\*\*0.5 Design and Implementation
\*\*\*\*0.6 Experimental Results and Discussion
#### 7.10.3 Dual-Stage Repetitive Control {#7-dot-10-dot-3-dual-stage-repetitive-control}
#### 7.10.4 Handling Hysteresis {#7-dot-10-dot-4-handling-hysteresis}
#### 7.10.5 Design and Implementation {#7-dot-10-dot-5-design-and-implementation}
#### 7.10.6 Experimental Results and Discussion {#7-dot-10-dot-6-experimental-results-and-discussion}
### 7.11 Summary {#7-dot-11-summary}
\*\*\*1 Summary
### References {#references}
## 8 Force Feedback Control {#8-force-feedback-control}
## Force Feedback Control {#force-feedback-control}
### 8.1 Introduction {#8-dot-1-introduction}
### Introduction {#introduction}
### 8.2 Modeling {#8-dot-2-modeling}
### Modeling {#modeling}
#### 8.2.1 Actuator Dynamics {#8-dot-2-dot-1-actuator-dynamics}
#### Actuator Dynamics {#actuator-dynamics}
#### 8.2.2 Sensor Dynamics {#8-dot-2-dot-2-sensor-dynamics}
#### Sensor Dynamics {#sensor-dynamics}
#### 8.2.3 Sensor Noise {#8-dot-2-dot-3-sensor-noise}
#### Sensor Noise {#sensor-noise}
#### 8.2.4 Mechanical Dynamics {#8-dot-2-dot-4-mechanical-dynamics}
#### Mechanical Dynamics {#mechanical-dynamics}
#### 8.2.5 System Properties {#8-dot-2-dot-5-system-properties}
#### System Properties {#system-properties}
#### 8.2.6 Example System {#8-dot-2-dot-6-example-system}
#### Example System {#example-system}
### 8.3 Damping Control {#8-dot-3-damping-control}
### Damping Control {#damping-control}
### 8.4 Tracking Control {#8-dot-4-tracking-control}
### Tracking Control {#tracking-control}
#### 8.4.1 Relationship Between Force and Displacement {#8-dot-4-dot-1-relationship-between-force-and-displacement}
#### Relationship Between Force and Displacement {#relationship-between-force-and-displacement}
#### 8.4.2 Integral Displacement Feedback {#8-dot-4-dot-2-integral-displacement-feedback}
#### Integral Displacement Feedback {#integral-displacement-feedback}
#### 8.4.3 Direct Tracking Control {#8-dot-4-dot-3-direct-tracking-control}
#### Direct Tracking Control {#direct-tracking-control}
#### 8.4.4 Dual Sensor Feedback {#8-dot-4-dot-4-dual-sensor-feedback}
#### Dual Sensor Feedback {#dual-sensor-feedback}
#### 8.4.5 Low Frequency Bypass {#8-dot-4-dot-5-low-frequency-bypass}
#### Low Frequency Bypass {#low-frequency-bypass}
#### 8.4.6 Feedforward Inputs {#8-dot-4-dot-6-feedforward-inputs}
#### Feedforward Inputs {#feedforward-inputs}
#### 8.4.7 Higher-Order Modes {#8-dot-4-dot-7-higher-order-modes}
#### Higher-Order Modes {#higher-order-modes}
### 8.5 Experimental Results {#8-dot-5-experimental-results}
### Experimental Results {#experimental-results}
#### 8.5.1 Experimental Nanopositioner {#8-dot-5-dot-1-experimental-nanopositioner}
#### Experimental Nanopositioner {#experimental-nanopositioner}
#### 8.5.2 Actuators and Force Sensors {#8-dot-5-dot-2-actuators-and-force-sensors}
#### Actuators and Force Sensors {#actuators-and-force-sensors}
#### 8.5.3 Control Design {#8-dot-5-dot-3-control-design}
#### Control Design {#control-design}
#### 8.5.4 Noise Performance {#8-dot-5-dot-4-noise-performance}
#### Noise Performance {#noise-performance}
### 8.6 Chapter Summary {#8-dot-6-chapter-summary}
### Chapter Summary {#chapter-summary}
### References {#references}
## 9 Feedforward Control {#9-feedforward-control}
## Feedforward Control {#feedforward-control}
### 9.1 Why Feedforward? {#9-dot-1-why-feedforward}
### Why Feedforward? {#why-feedforward}
### 9.2 Modeling for Feedforward Control {#9-dot-2-modeling-for-feedforward-control}
### Modeling for Feedforward Control {#modeling-for-feedforward-control}
### 9.3 Feedforward Control of Dynamics and Hysteresis {#9-dot-3-feedforward-control-of-dynamics-and-hysteresis}
### Feedforward Control of Dynamics and Hysteresis {#feedforward-control-of-dynamics-and-hysteresis}
#### 9.3.1 Simple DC-Gain Feedforward Control {#9-dot-3-dot-1-simple-dc-gain-feedforward-control}
#### Simple DC-Gain Feedforward Control {#simple-dc-gain-feedforward-control}
#### 9.3.2 An Inversion-Based Feedforward Approach for Linear Dynamics {#9-dot-3-dot-2-an-inversion-based-feedforward-approach-for-linear-dynamics}
#### An Inversion-Based Feedforward Approach for Linear Dynamics {#an-inversion-based-feedforward-approach-for-linear-dynamics}
#### 9.3.3 Frequency-Weighted Inversion: The Optimal Inverse {#9-dot-3-dot-3-frequency-weighted-inversion-the-optimal-inverse}
#### Frequency-Weighted Inversion: The Optimal Inverse {#frequency-weighted-inversion-the-optimal-inverse}
#### 9.3.4 Application to AFM Imaging {#9-dot-3-dot-4-application-to-afm-imaging}
#### Application to AFM Imaging {#application-to-afm-imaging}
### 9.4 Feedforward and Feedback Control {#9-dot-4-feedforward-and-feedback-control}
### Feedforward and Feedback Control {#feedforward-and-feedback-control}
#### 9.4.1 Application to AFM Imaging {#9-dot-4-dot-1-application-to-afm-imaging}
#### Application to AFM Imaging {#application-to-afm-imaging}
### 9.5 Iterative Feedforward Control {#9-dot-5-iterative-feedforward-control}
### Iterative Feedforward Control {#iterative-feedforward-control}
#### 9.5.1 The ILC Problem {#9-dot-5-dot-1-the-ilc-problem}
#### The ILC Problem {#the-ilc-problem}
#### 9.5.2 Model-Based ILC {#9-dot-5-dot-2-model-based-ilc}
#### Model-Based ILC {#model-based-ilc}
#### 9.5.3 Nonlinear ILC {#9-dot-5-dot-3-nonlinear-ilc}
#### Nonlinear ILC {#nonlinear-ilc}
#### 9.5.4 Conclusions {#9-dot-5-dot-4-conclusions}
#### Conclusions {#conclusions}
### References {#references}
## 10 Command Shaping {#10-command-shaping}
## Command Shaping {#command-shaping}
### 10.1 Introduction {#10-dot-1-introduction}
@@ -600,7 +562,7 @@ Year
### References {#references}
## 11 Hysteresis Modeling and Control {#11-hysteresis-modeling-and-control}
## Hysteresis Modeling and Control {#hysteresis-modeling-and-control}
### 11.1 Introduction {#11-dot-1-introduction}
@@ -639,7 +601,7 @@ Year
### References {#references}
## 12 Charge Drives {#12-charge-drives}
## Charge Drives {#charge-drives}
### 12.1 Introduction {#12-dot-1-introduction}
@@ -681,7 +643,7 @@ Year
### References {#references}
## 13 Noise in Nanopositioning Systems {#13-noise-in-nanopositioning-systems}
## Noise in Nanopositioning Systems {#noise-in-nanopositioning-systems}
### 13.1 Introduction {#13-dot-1-introduction}
@@ -821,11 +783,11 @@ Year
### Amplifier and Piezo electrical models {#amplifier-and-piezo-electrical-models}
<a id="org1aabb30"></a>
<a id="orgc11b95b"></a>
{{< figure src="/ox-hugo/fleming14_amplifier_model.png" caption="Figure 1: A voltage source \\(V\_s\\) driving a piezoelectric load. The actuator is modeled by a capacitance \\(C\_p\\) and strain-dependent voltage source \\(V\_p\\). The resistance \\(R\_s\\) is the output impedance and \\(L\\) the cable inductance." >}}
Consider the electrical circuit shown in Figure [1](#org1aabb30) where a voltage source is connected to a piezoelectric actuator.
Consider the electrical circuit shown in Figure [1](#orgc11b95b) where a voltage source is connected to a piezoelectric actuator.
The actuator is modeled as a capacitance \\(C\_p\\) in series with a strain-dependent voltage source \\(V\_p\\).
The resistance \\(R\_s\\) and inductance \\(L\\) are the source impedance and the cable inductance respectively.
@@ -949,4 +911,4 @@ The bandwidth limitations of standard piezoelectric drives were identified as:
## Bibliography {#bibliography}
<a id="org6bfb955"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
<a id="org9f0983e"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.