Update Content - 2022-03-15
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Piezoelectric Actuators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{<relref "actuators.md#" >}}), [Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}})
|
||||
: [Actuators]({{< relref "actuators.md" >}}), [Voltage Amplifier]({{< relref "voltage_amplifier.md" >}})
|
||||
|
||||
|
||||
## Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
|
||||
@@ -18,9 +18,9 @@ Tags
|
||||
|----------------------------------------------------------------------------------------------------------------------|-----------|
|
||||
| [Cedrat](http://www.cedrat-technologies.com/) | France |
|
||||
| [PI](https://www.physikinstrumente.com/en/) | USA |
|
||||
| [Piezo System](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany |
|
||||
| [Piezo System](https://www.piezosystem.com/products/piezo_actuators/stacktypeactuators/) | Germany |
|
||||
| [Noliac](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8700) | USA |
|
||||
| [PiezoDrive](https://www.piezodrive.com/actuators/) | Australia |
|
||||
| [Mechano Transformer](http://www.mechano-transformer.com/en/products/10.html) | Japan |
|
||||
| [CoreMorrow](http://www.coremorrow.com/en/pro-9-1.html) | China |
|
||||
@@ -33,7 +33,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgd563065)) ([Notes]({{<relref "fleming10_nanop_system_with_force_feedb.md#" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in <fleming10_nanop_system_with_force_feedb> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb.md" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@@ -57,25 +57,25 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orgb463c4c)):
|
||||
The Amplified Piezo Actuators principle is presented in <claeyssen07_amplif_piezoel_actuat>:
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2bf81f0)).
|
||||
A model of an amplified piezoelectric actuator is described in <lucinskis16_dynam_charac>.
|
||||
|
||||
<a id="org77a46eb"></a>
|
||||
<a id="figure--fig:ling16-topology-piezo-mechanism-types"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="<span class=\"figure-number\">Figure 1: </span>Topology of several types of compliant mechanisms <ling16_enhan_mathem_model_displ_amplif>" >}}
|
||||
|
||||
| Manufacturers | Country |
|
||||
|----------------------------------------------------------------------------------------------------|-----------|
|
||||
| [Cedrat](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
|
||||
| [PiezoDrive](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
|
||||
| [Dynamic-Structures](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8700) | USA |
|
||||
| [Noliac](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark |
|
||||
| [Mechano Transformer](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html) | Japan |
|
||||
| [Mechano Transformer](http://www.mechano-transformer.com/en/products/01a_actuator_5.html) | Japan |
|
||||
| [CoreMorrow](http://www.coremorrow.com/en/pro-13-1.html) | China |
|
||||
| [PiezoData](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China |
|
||||
|
||||
@@ -99,7 +99,7 @@ Typical specifications of piezoelectric stack actuators are usually in terms of:
|
||||
|
||||
The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied without any load.
|
||||
|
||||
Typical maximum strain of Piezoelectric Stack Actuators is \\(0.1\%\\).
|
||||
Typical maximum strain of Piezoelectric Stack Actuators is \\(0.1\\%\\).
|
||||
The free displacement \\(\Delta L\_{f}\\) is then related to the length \\(L\\) of piezoelectric stack by:
|
||||
|
||||
\begin{equation}
|
||||
@@ -142,72 +142,62 @@ with:
|
||||
|
||||
### Resolution {#resolution}
|
||||
|
||||
The resolution is limited by the noise in the [Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}).
|
||||
The resolution is limited by the noise in the [Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}).
|
||||
|
||||
Typical [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}}) of voltage amplifiers is \\(100dB = 10^{5}\\).
|
||||
Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}}) of voltage amplifiers is \\(100dB = 10^{5}\\).
|
||||
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
|
||||
|
||||
\begin{equation}
|
||||
r \approx \frac{L}{10^5}
|
||||
\end{equation}
|
||||
|
||||
For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
|
||||
For a piezoelectric stack with a displacement of \\(100\\,[\mu m]\\), the resolution will be \\(\approx 1\\,[nm]\\).
|
||||
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgca6870e)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#figure--fig:piezoelectric-capacitance-voltage-max)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
[Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="orgca6870e"></a>
|
||||
<a id="figure--fig:piezoelectric-capacitance-voltage-max"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="<span class=\"figure-number\">Figure 2: </span>Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orge05f5e6)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#figure--fig:piezoelectric-mass-load)).
|
||||
|
||||
<a id="orge05f5e6"></a>
|
||||
<a id="figure--fig:piezoelectric-mass-load"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="<span class=\"figure-number\">Figure 3: </span>Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgfcd374f)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#figure--fig:piezoelectric-spring-load)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="orgfcd374f"></a>
|
||||
<a id="figure--fig:piezoelectric-spring-load"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="<span class=\"figure-number\">Figure 4: </span>Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orgada6c4c)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#figure--fig:piezoelectric-force-displ-relation)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="orgada6c4c"></a>
|
||||
<a id="figure--fig:piezoelectric-force-displ-relation"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="<span class=\"figure-number\">Figure 5: </span>Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}).
|
||||
Limitations of the electronics is discussed in [Design, modeling and control of nanopositioning systems]({{<relref "fleming14_desig_model_contr_nanop_system.md#" >}}).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgb463c4c"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="orgd563065"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org2bf81f0"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}).
|
||||
Limitations of the electronics is discussed in [Design, modeling and control of nanopositioning systems]({{< relref "fleming14_desig_model_contr_nanop_system.md" >}}).
|
||||
|
Reference in New Issue
Block a user