Re-export all org mode files

This commit is contained in:
2020-08-17 21:59:26 +02:00
parent bc8c757e21
commit 3816e389e9
37 changed files with 403 additions and 266 deletions

View File

@@ -8,7 +8,7 @@ Tags
: [Position Sensors]({{< relref "position_sensors" >}})
Reference
: <sup id="3fb5b61524290e36d639a4fac65703d0"><a class="reference-link" href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup>
: ([Fleming 2013](#org66efc4b))
Author(s)
: Fleming, A. J.
@@ -33,7 +33,7 @@ Usually quoted as a percentage of the fill-scale range (FSR):
With \\(e\_m(v)\\) is the mapping error.
<a id="org6e00657"></a>
<a id="org51fba0c"></a>
{{< figure src="/ox-hugo/fleming13_mapping_error.png" caption="Figure 1: The actual position versus the output voltage of a position sensor. The calibration function \\(f\_{cal}(v)\\) is an approximation of the sensor mapping function \\(f\_a(v)\\) where \\(v\\) is the voltage resulting from a displacement \\(x\\). \\(e\_m(v)\\) is the residual error." >}}
@@ -42,7 +42,7 @@ With \\(e\_m(v)\\) is the mapping error.
If the shape of the mapping function actually varies with time, the maximum error due to drift must be evaluated by finding the worst-case mapping error.
<a id="org076fb4b"></a>
<a id="org2b35a7e"></a>
{{< figure src="/ox-hugo/fleming13_drift_stability.png" caption="Figure 2: The worst case range of a linear mapping function \\(f\_a(v)\\) for a given error in sensitivity and offset." >}}
@@ -147,9 +147,9 @@ The empirical rule states that there is a \\(99.7\%\\) probability that a sample
This if we define the resolution as \\(\delta = 6 \sigma\\), we will referred to as the \\(6\sigma\text{-resolution}\\).
Another important parameter that must be specified when quoting resolution is the sensor bandwidth.
There is usually a trade-off between bandwidth and resolution (figure [3](#org92eeb72)).
There is usually a trade-off between bandwidth and resolution (figure [3](#org40574f2)).
<a id="org92eeb72"></a>
<a id="org40574f2"></a>
{{< figure src="/ox-hugo/fleming13_tradeoff_res_bandwidth.png" caption="Figure 3: The resolution versus banwidth of a position sensor." >}}
@@ -181,8 +181,10 @@ A convenient method for reporting this ratio is in parts-per-million (ppm):
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
# Bibliography
<a class="bibtex-entry" id="fleming13_review_nanom_resol_posit_sensor">Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016</a> [](#3fb5b61524290e36d639a4fac65703d0)
## Bibliography {#bibliography}
<a id="org66efc4b"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):10626. <https://doi.org/10.1016/j.sna.2012.10.016>.
## Backlinks {#backlinks}