Re-export all org mode files
This commit is contained in:
@@ -8,9 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="ba05ff213f8e5963d91559d95becfbdb"><a class="reference-link" href="#chen00_ident_decoup_contr_flexur_joint_hexap" title="Yixin Chen \& McInroy, Identification and Decoupling Control of Flexure Jointed Hexapods, nil, in in: {Proceedings 2000 ICRA. Millennium Conference. IEEE
|
||||
International Conference on Robotics and Automation. Symposia
|
||||
Proceedings (Cat. No.00CH37065)}, edited by (2000)">(Yixin Chen \& McInroy, 2000)</a></sup>
|
||||
: ([Chen and McInroy 2000](#orgd504c56))
|
||||
|
||||
Author(s)
|
||||
: Chen, Y., & McInroy, J.
|
||||
@@ -45,10 +43,9 @@ The algorithm derived herein removes these constraints, thus greatly expanding t
|
||||
|
||||
## Dynamic Model of Flexure Jointed Hexapods {#dynamic-model-of-flexure-jointed-hexapods}
|
||||
|
||||
The derivation of the dynamic model is done in <sup id="5da427f78c552aa92cd64c2a6df961f1"><a class="reference-link" href="#mcinroy99_dynam" title="McInroy, Dynamic modeling of flexure jointed hexapods for control purposes, nil, in in: {Proceedings of the 1999 IEEE International Conference on
|
||||
Control Applications (Cat. No.99CH36328)}, edited by (1999)">(McInroy, 1999)</a></sup> ([Notes]({{< relref "mcinroy99_dynam" >}})).
|
||||
The derivation of the dynamic model is done in ([McInroy 1999](#orgbf9df90)) ([Notes]({{< relref "mcinroy99_dynam" >}})).
|
||||
|
||||
<a id="org81e0a96"></a>
|
||||
<a id="org56416c1"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/chen00_flexure_hexapod.png" caption="Figure 1: A flexured joint Hexapod. {P} is a cartesian coordiante frame located at (and rigidly connected to) the payload's center of mass. {B} is a frame attached to the (possibly moving) base, and {U} is a universal inertial frame of reference" >}}
|
||||
|
||||
@@ -102,7 +99,9 @@ where
|
||||
|
||||
## Experimental Results {#experimental-results}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="chen00_ident_decoup_contr_flexur_joint_hexap">Chen, Y., & McInroy, J., *Identification and decoupling control of flexure jointed hexapods*, In , Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (pp. ) (2000). : .</a> [↩](#ba05ff213f8e5963d91559d95becfbdb)
|
||||
|
||||
<a class="bibtex-entry" id="mcinroy99_dynam">McInroy, J., *Dynamic modeling of flexure jointed hexapods for control purposes*, In , Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328) (pp. ) (1999). : .</a> [↩](#5da427f78c552aa92cd64c2a6df961f1)
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgd504c56"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="orgbf9df90"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="ad17e03f0fbbcc1a070557d7b5a0e1e1"><a class="reference-link" href="#dasgupta00_stewar_platf_manip" title="Bhaskar Dasgupta \& Mruthyunjaya, The Stewart Platform Manipulator: a Review, {Mechanism and Machine Theory}, v(1), 15-40 (2000).">(Bhaskar Dasgupta \& Mruthyunjaya, 2000)</a></sup>
|
||||
: ([Dasgupta and Mruthyunjaya 2000](#orge03a23b))
|
||||
|
||||
Author(s)
|
||||
: Dasgupta, B., & Mruthyunjaya, T.
|
||||
@@ -33,5 +33,7 @@ Year
|
||||
|
||||
The generalized Stewart platforms consists of two rigid bodies (referred to as the base and the platoform) connected through six extensible legs, each with sherical joints at both ends.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="dasgupta00_stewar_platf_manip">Dasgupta, B., & Mruthyunjaya, T., *The stewart platform manipulator: a review*, Mechanism and Machine Theory, *35(1)*, 15–40 (2000). http://dx.doi.org/10.1016/s0094-114x(99)00006-3</a> [↩](#ad17e03f0fbbcc1a070557d7b5a0e1e1)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orge03a23b"></a>Dasgupta, Bhaskar, and T.S. Mruthyunjaya. 2000. “The Stewart Platform Manipulator: A Review.” _Mechanism and Machine Theory_ 35 (1):15–40. <https://doi.org/10.1016/s0094-114x(99)>00006-3.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="3fb5b61524290e36d639a4fac65703d0"><a class="reference-link" href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup>
|
||||
: ([Fleming 2013](#org66efc4b))
|
||||
|
||||
Author(s)
|
||||
: Fleming, A. J.
|
||||
@@ -33,7 +33,7 @@ Usually quoted as a percentage of the fill-scale range (FSR):
|
||||
|
||||
With \\(e\_m(v)\\) is the mapping error.
|
||||
|
||||
<a id="org6e00657"></a>
|
||||
<a id="org51fba0c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/fleming13_mapping_error.png" caption="Figure 1: The actual position versus the output voltage of a position sensor. The calibration function \\(f\_{cal}(v)\\) is an approximation of the sensor mapping function \\(f\_a(v)\\) where \\(v\\) is the voltage resulting from a displacement \\(x\\). \\(e\_m(v)\\) is the residual error." >}}
|
||||
|
||||
@@ -42,7 +42,7 @@ With \\(e\_m(v)\\) is the mapping error.
|
||||
|
||||
If the shape of the mapping function actually varies with time, the maximum error due to drift must be evaluated by finding the worst-case mapping error.
|
||||
|
||||
<a id="org076fb4b"></a>
|
||||
<a id="org2b35a7e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/fleming13_drift_stability.png" caption="Figure 2: The worst case range of a linear mapping function \\(f\_a(v)\\) for a given error in sensitivity and offset." >}}
|
||||
|
||||
@@ -147,9 +147,9 @@ The empirical rule states that there is a \\(99.7\%\\) probability that a sample
|
||||
This if we define the resolution as \\(\delta = 6 \sigma\\), we will referred to as the \\(6\sigma\text{-resolution}\\).
|
||||
|
||||
Another important parameter that must be specified when quoting resolution is the sensor bandwidth.
|
||||
There is usually a trade-off between bandwidth and resolution (figure [3](#org92eeb72)).
|
||||
There is usually a trade-off between bandwidth and resolution (figure [3](#org40574f2)).
|
||||
|
||||
<a id="org92eeb72"></a>
|
||||
<a id="org40574f2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/fleming13_tradeoff_res_bandwidth.png" caption="Figure 3: The resolution versus banwidth of a position sensor." >}}
|
||||
|
||||
@@ -181,8 +181,10 @@ A convenient method for reporting this ratio is in parts-per-million (ppm):
|
||||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="fleming13_review_nanom_resol_posit_sensor">Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106–126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016</a> [↩](#3fb5b61524290e36d639a4fac65703d0)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org66efc4b"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="cc10fe9545c7c381cc2b610e8f91a071"><a class="reference-link" href="#furqan17_studies_stewar_platf_manip" title="Mohd Furqan, Mohd Suhaib \& Nazeer Ahmad, Studies on Stewart Platform Manipulator: a Review, {Journal of Mechanical Science and Technology}, v(9), 4459-4470 (2017).">(Mohd Furqan {\it et al.}, 2017)</a></sup>
|
||||
: ([Furqan, Suhaib, and Ahmad 2017](#org5774b90))
|
||||
|
||||
Author(s)
|
||||
: Furqan, M., Suhaib, M., & Ahmad, N.
|
||||
@@ -18,5 +18,7 @@ Year
|
||||
|
||||
Lots of references.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="furqan17_studies_stewar_platf_manip">Furqan, M., Suhaib, M., & Ahmad, N., *Studies on stewart platform manipulator: a review*, Journal of Mechanical Science and Technology, *31(9)*, 4459–4470 (2017). http://dx.doi.org/10.1007/s12206-017-0846-1</a> [↩](#cc10fe9545c7c381cc2b610e8f91a071)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org5774b90"></a>Furqan, Mohd, Mohd Suhaib, and Nazeer Ahmad. 2017. “Studies on Stewart Platform Manipulator: A Review.” _Journal of Mechanical Science and Technology_ 31 (9):4459–70. <https://doi.org/10.1007/s12206-017-0846-1>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="bedab298599c84f60236313ebaad2714"><a class="reference-link" href="#furutani04_nanom_cuttin_machin_using_stewar" title="Katsushi Furutani, Michio Suzuki \& Ryusei Kudoh, Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism, {Measurement Science and Technology}, v(2), 467-474 (2004).">(Katsushi Furutani {\it et al.}, 2004)</a></sup>
|
||||
: ([Furutani, Suzuki, and Kudoh 2004](#org934975a))
|
||||
|
||||
Author(s)
|
||||
: Furutani, K., Suzuki, M., & Kudoh, R.
|
||||
@@ -34,5 +34,7 @@ Possible sources of error:
|
||||
To minimize the errors, a calibration is done between the required leg length and the wanted platform pose.
|
||||
Then, it is fitted with 4th order polynomial and included in the control architecture.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="furutani04_nanom_cuttin_machin_using_stewar">Furutani, K., Suzuki, M., & Kudoh, R., *Nanometre-cutting machine using a stewart-platform parallel mechanism*, Measurement Science and Technology, *15(2)*, 467–474 (2004). http://dx.doi.org/10.1088/0957-0233/15/2/022</a> [↩](#bedab298599c84f60236313ebaad2714)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org934975a"></a>Furutani, Katsushi, Michio Suzuki, and Ryusei Kudoh. 2004. “Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism.” _Measurement Science and Technology_ 15 (2):467–74. <https://doi.org/10.1088/0957-0233/15/2/022>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="b820b918ced36901ea0ad4bf653202c6"><a class="reference-link" href="#gao15_measur_techn_precis_posit" title="Gao, Kim, Bosse, Haitjema, , Chen, Lu, Knapp, Weckenmann, , Estler \& Kunzmann, Measurement Technologies for Precision Positioning, {CIRP Annals}, v(2), 773-796 (2015).">(Gao {\it et al.}, 2015)</a></sup>
|
||||
: ([Gao et al. 2015](#org3775d30))
|
||||
|
||||
Author(s)
|
||||
: Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., …
|
||||
@@ -16,5 +16,7 @@ Author(s)
|
||||
Year
|
||||
: 2015
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="gao15_measur_techn_precis_posit">Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., …, *Measurement technologies for precision positioning*, CIRP Annals, *64(2)*, 773–796 (2015). http://dx.doi.org/10.1016/j.cirp.2015.05.009</a> [↩](#b820b918ced36901ea0ad4bf653202c6)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org3775d30"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” _CIRP Annals_ 64 (2):773–96. <https://doi.org/10.1016/j.cirp.2015.05.009>.
|
||||
|
@@ -8,8 +8,7 @@ Tags
|
||||
: [Multivariable Control]({{< relref "multivariable_control" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="07f63c751c1d9fcfe628178688f7ec24"><a class="reference-link" href="#garg07_implem_chall_multiv_contr" title="Sanjay Garg, Implementation Challenges for Multivariable Control: What you did not learn in school!, nil, in in: {AIAA Guidance, Navigation and Control Conference and
|
||||
Exhibit}, edited by (2007)">(Sanjay Garg, 2007)</a></sup>
|
||||
: ([Garg 2007](#org2f331c4))
|
||||
|
||||
Author(s)
|
||||
: Garg, S.
|
||||
@@ -35,5 +34,7 @@ The control rate should be weighted appropriately in order to not saturate the s
|
||||
|
||||
- importance of scaling the plant prior to synthesis and also replacing pure integrators with slow poles
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="garg07_implem_chall_multiv_contr">Garg, S., *Implementation challenges for multivariable control: what you did not learn in school!*, In , AIAA Guidance, Navigation and Control Conference and Exhibit (pp. ) (2007). : .</a> [↩](#07f63c751c1d9fcfe628178688f7ec24)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2f331c4"></a>Garg, Sanjay. 2007. “Implementation Challenges for Multivariable Control: What You Did Not Learn in School!” In _AIAA Guidance, Navigation and Control Conference and Exhibit_, nil. <https://doi.org/10.2514/6.2007-6334>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Vibration Isolation]({{< relref "vibration_isolation" >}}), [Active Damping]({{< relref "active_damping" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="10e535e895bdcd6b921bff33ef68cd81"><a class="reference-link" href="#hanieh03_activ_stewar" title="Hanieh, Active isolation and damping of vibrations via Stewart platform (2003).">(Hanieh, 2003)</a></sup>
|
||||
: ([Hanieh 2003](#org16a7ca0))
|
||||
|
||||
Author(s)
|
||||
: Hanieh, A. A.
|
||||
@@ -16,5 +16,7 @@ Author(s)
|
||||
Year
|
||||
: 2003
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="hanieh03_activ_stewar">Hanieh, A. A., *Active isolation and damping of vibrations via stewart platform* (2003). Universit{\'e} Libre de Bruxelles, Brussels, Belgium.</a> [↩](#10e535e895bdcd6b921bff33ef68cd81)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org16a7ca0"></a>Hanieh, Ahmed Abu. 2003. “Active Isolation and Damping of Vibrations via Stewart Platform.” Université Libre de Bruxelles, Brussels, Belgium.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="ee917739f88877d6c2758c1c36565deb"><a class="reference-link" href="#jiao18_dynam_model_exper_analy_stewar" title="Jian Jiao, Ying Wu, Kaiping Yu \& Rui Zhao, Dynamic Modeling and Experimental Analyses of Stewart Platform With Flexible Hinges, {Journal of Vibration and Control}, v(1), 151-171 (2018).">(Jian Jiao {\it et al.}, 2018)</a></sup>
|
||||
: ([Jiao et al. 2018](#orga81be47))
|
||||
|
||||
Author(s)
|
||||
: Jiao, J., Wu, Y., Yu, K., & Zhao, R.
|
||||
@@ -16,5 +16,7 @@ Author(s)
|
||||
Year
|
||||
: 2018
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="jiao18_dynam_model_exper_analy_stewar">Jiao, J., Wu, Y., Yu, K., & Zhao, R., *Dynamic modeling and experimental analyses of stewart platform with flexible hinges*, Journal of Vibration and Control, *25(1)*, 151–171 (2018). http://dx.doi.org/10.1177/1077546318772474</a> [↩](#ee917739f88877d6c2758c1c36565deb)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga81be47"></a>Jiao, Jian, Ying Wu, Kaiping Yu, and Rui Zhao. 2018. “Dynamic Modeling and Experimental Analyses of Stewart Platform with Flexible Hinges.” _Journal of Vibration and Control_ 25 (1):151–71. <https://doi.org/10.1177/1077546318772474>.
|
||||
|
@@ -2,14 +2,13 @@
|
||||
title = "A new isotropic and decoupled 6-dof parallel manipulator"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
GHissueID = 1
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="17295cbc2858c65ecc60d51b450233e3"><a class="reference-link" href="#legnani12_new_isotr_decoup_paral_manip" title="Legnani, Fassi, Giberti, Cinquemani, \& Tosi, A New Isotropic and Decoupled 6-dof Parallel Manipulator, {Mechanism and Machine Theory}, v(nil), 64-81 (2012).">(Legnani {\it et al.}, 2012)</a></sup>
|
||||
: ([Legnani et al. 2012](#orgfeceab9))
|
||||
|
||||
Author(s)
|
||||
: Legnani, G., Fassi, I., Giberti, H., Cinquemani, S., & Tosi, D.
|
||||
@@ -23,13 +22,15 @@ Year
|
||||
|
||||
Example of generated isotropic manipulator (not decoupled).
|
||||
|
||||
<a id="org9b13cfd"></a>
|
||||
<a id="orgcc7f670"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/legnani12_isotropy_gen.png" caption="Figure 1: Location of the leg axes using an isotropy generator" >}}
|
||||
|
||||
<a id="org958618e"></a>
|
||||
<a id="orgb85ffa0"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/legnani12_generated_isotropy.png" caption="Figure 2: Isotropic configuration" >}}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="legnani12_new_isotr_decoup_paral_manip">Legnani, G., Fassi, I., Giberti, H., Cinquemani, S., & Tosi, D., *A new isotropic and decoupled 6-dof parallel manipulator*, Mechanism and Machine Theory, *58(nil)*, 64–81 (2012). http://dx.doi.org/10.1016/j.mechmachtheory.2012.07.008</a> [↩](#17295cbc2858c65ecc60d51b450233e3)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgfeceab9"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” _Mechanism and Machine Theory_ 58 (nil):64–81. <https://doi.org/10.1016/j.mechmachtheory.2012.07.008>.
|
||||
|
@@ -9,7 +9,7 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: <sup id="f6d310236552ee92579cf0673a2ca695"><a href="#mcinroy00_desig_contr_flexur_joint_hexap" title="McInroy \& Hamann, Design and Control of Flexure Jointed Hexapods, {IEEE Transactions on Robotics and Automation}, v(4), 372-381 (2000).">(McInroy \& Hamann, 2000)</a></sup>
|
||||
: ([McInroy and Hamann 2000](#orgc9838dc))
|
||||
|
||||
Author(s)
|
||||
: McInroy, J., & Hamann, J.
|
||||
@@ -17,5 +17,7 @@ Author(s)
|
||||
Year
|
||||
: 2000
|
||||
|
||||
# Bibliography
|
||||
<a id="mcinroy00_desig_contr_flexur_joint_hexap"></a>McInroy, J., & Hamann, J., *Design and control of flexure jointed hexapods*, IEEE Transactions on Robotics and Automation, *16(4)*, 372–381 (2000). http://dx.doi.org/10.1109/70.864229 [↩](#f6d310236552ee92579cf0673a2ca695)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgc9838dc"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Motion Control]({{< relref "motion_control" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="73fd325bd20a6ef8972145e535f38198"><a class="reference-link" href="#oomen18_advan_motion_contr_precis_mechat" title="Tom Oomen, Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems, {IEEJ Journal of Industry Applications}, v(2), 127-140 (2018).">(Tom Oomen, 2018)</a></sup>
|
||||
: ([Oomen 2018](#orga6f6c0b))
|
||||
|
||||
Author(s)
|
||||
: Oomen, T.
|
||||
@@ -16,9 +16,11 @@ Author(s)
|
||||
Year
|
||||
: 2018
|
||||
|
||||
<a id="org5cf2052"></a>
|
||||
<a id="org2caf38a"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/oomen18_next_gen_loop_gain.png" caption="Figure 1: Envisaged developments in motion systems. In traditional motion systems, the control bandwidth takes place in the rigid-body region. In the next generation systemes, flexible dynamics are foreseen to occur within the control bandwidth." >}}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="oomen18_advan_motion_contr_precis_mechat">Oomen, T., *Advanced motion control for precision mechatronics: control, identification, and learning of complex systems*, IEEJ Journal of Industry Applications, *7(2)*, 127–140 (2018). http://dx.doi.org/10.1541/ieejjia.7.127</a> [↩](#73fd325bd20a6ef8972145e535f38198)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga6f6c0b"></a>Oomen, Tom. 2018. “Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems.” _IEEJ Journal of Industry Applications_ 7 (2):127–40. <https://doi.org/10.1541/ieejjia.7.127>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation" >}}), [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="8096d5b2df73551d836ef96b7ca7efa4"><a class="reference-link" href="#preumont07_six_axis_singl_stage_activ" title="Preumont, Horodinca, Romanescu, de, Marneffe, Avraam, Deraemaeker, Bossens, \& Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform, {Journal of Sound and Vibration}, v(3-5), 644-661 (2007).">(Preumont {\it et al.}, 2007)</a></sup>
|
||||
: ([Preumont et al. 2007](#org89d2c27))
|
||||
|
||||
Author(s)
|
||||
: Preumont, A., Horodinca, M., Romanescu, I., Marneffe, B. d., Avraam, M., Deraemaeker, A., Bossens, F., …
|
||||
@@ -18,32 +18,34 @@ Year
|
||||
|
||||
Summary:
|
||||
|
||||
- **Cubic** Stewart platform (Figure [3](#org2d41889))
|
||||
- **Cubic** Stewart platform (Figure [3](#orgfb89e2d))
|
||||
- Provides uniform control capability
|
||||
- Uniform stiffness in all directions
|
||||
- minimizes the cross-coupling among actuators and sensors of different legs
|
||||
- Flexible joints (Figure [2](#orgf58a4b4))
|
||||
- Flexible joints (Figure [2](#org2dfd058))
|
||||
- Piezoelectric force sensors
|
||||
- Voice coil actuators
|
||||
- Decentralized feedback control approach for vibration isolation
|
||||
- Effect of parasitic stiffness of the flexible joints on the IFF performance (Figure [1](#org6835865))
|
||||
- Effect of parasitic stiffness of the flexible joints on the IFF performance (Figure [1](#org7e6bce7))
|
||||
- The Stewart platform has 6 suspension modes at different frequencies.
|
||||
Thus the gain of the IFF controller cannot be optimal for all the modes.
|
||||
It is better if all the modes of the platform are near to each other.
|
||||
- Discusses the design of the legs in order to maximize the natural frequency of the local modes.
|
||||
- To estimate the isolation performance of the Stewart platform, a scalar indicator is defined as the Frobenius norm of the transmissibility matrix
|
||||
|
||||
<a id="org6835865"></a>
|
||||
<a id="org7e6bce7"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont07_iff_effect_stiffness.png" caption="Figure 1: Root locus with IFF with no parasitic stiffness and with parasitic stiffness" >}}
|
||||
|
||||
<a id="orgf58a4b4"></a>
|
||||
<a id="org2dfd058"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont07_flexible_joints.png" caption="Figure 2: Flexible joints used for the Stewart platform" >}}
|
||||
|
||||
<a id="org2d41889"></a>
|
||||
<a id="orgfb89e2d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont07_stewart_platform.png" caption="Figure 3: Stewart platform" >}}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="preumont07_six_axis_singl_stage_activ">Preumont, A., Horodinca, M., Romanescu, I., Marneffe, B. d., Avraam, M., Deraemaeker, A., Bossens, F., …, *A six-axis single-stage active vibration isolator based on stewart platform*, Journal of Sound and Vibration, *300(3-5)*, 644–661 (2007). http://dx.doi.org/10.1016/j.jsv.2006.07.050</a> [↩](#8096d5b2df73551d836ef96b7ca7efa4)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org89d2c27"></a>Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” _Journal of Sound and Vibration_ 300 (3-5):644–61. <https://doi.org/10.1016/j.jsv.2006.07.050>.
|
||||
|
@@ -9,7 +9,7 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: <sup id="e71cc5e3ec879813f2344a6dce1ac11f"><a href="#sayed01_survey_spect_factor_method" title="Sayed \& Kailath, A Survey of Spectral Factorization Methods, {Numerical Linear Algebra with Applications}, v(6-7), 467-496 (2001).">(Sayed \& Kailath, 2001)</a></sup>
|
||||
: ([Sayed and Kailath 2001](#org0cb985f))
|
||||
|
||||
Author(s)
|
||||
: Sayed, A. H., & Kailath, T.
|
||||
@@ -17,5 +17,7 @@ Author(s)
|
||||
Year
|
||||
: 2001
|
||||
|
||||
# Bibliography
|
||||
<a id="sayed01_survey_spect_factor_method"></a>Sayed, A. H., & Kailath, T., *A survey of spectral factorization methods*, Numerical Linear Algebra with Applications, *8(6-7)*, 467–496 (2001). http://dx.doi.org/10.1002/nla.250 [↩](#e71cc5e3ec879813f2344a6dce1ac11f)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org0cb985f"></a>Sayed, A. H., and T. Kailath. 2001. “A Survey of Spectral Factorization Methods.” _Numerical Linear Algebra with Applications_ 8 (6-7):467–96. <https://doi.org/10.1002/nla.250>.
|
||||
|
@@ -9,7 +9,7 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: <sup id="ee9f1b2ad5707e86bf7c26e8c325b324"><a class="reference-link" href="#schroeck01_compen_desig_linear_time_invar" title="Schroeck, Messner \& McNab, On Compensator Design for Linear Time-Invariant Dual-Input Single-Output Systems, {IEEE/ASME Transactions on Mechatronics}, v(1), 50-57 (2001).">(Schroeck {\it et al.}, 2001)</a></sup>
|
||||
: ([Schroeck, Messner, and McNab 2001](#orga714386))
|
||||
|
||||
Author(s)
|
||||
: Schroeck, S., Messner, W., & McNab, R.
|
||||
@@ -17,5 +17,7 @@ Author(s)
|
||||
Year
|
||||
: 2001
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="schroeck01_compen_desig_linear_time_invar">Schroeck, S., Messner, W., & McNab, R., *On compensator design for linear time-invariant dual-input single-output systems*, IEEE/ASME Transactions on Mechatronics, *6(1)*, 50–57 (2001). http://dx.doi.org/10.1109/3516.914391</a> [↩](#ee9f1b2ad5707e86bf7c26e8c325b324)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga714386"></a>Schroeck, S.J., W.C. Messner, and R.J. McNab. 2001. “On Compensator Design for Linear Time-Invariant Dual-Input Single-Output Systems.” _IEEE/ASME Transactions on Mechatronics_ 6 (1):50–57. <https://doi.org/10.1109/3516.914391>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Active Damping]({{< relref "active_damping" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="d5c1263eebe6caa1e91b078b620d72f1"><a class="reference-link" href="#souleille18_concep_activ_mount_space_applic" title="Souleille, Lampert, Lafarga, , Hellegouarch, Rondineau, Rodrigues, Gon\ccalo \& Collette, A Concept of Active Mount for Space Applications, {CEAS Space Journal}, v(2), 157--165 (2018).">(Souleille {\it et al.}, 2018)</a></sup>
|
||||
: ([Souleille et al. 2018](#org91c3531))
|
||||
|
||||
Author(s)
|
||||
: Souleille, A., Lampert, T., Lafarga, V., Hellegouarch, S., Rondineau, A., Rodrigues, Gonccalo, & Collette, C.
|
||||
@@ -23,10 +23,10 @@ This article discusses the use of Integral Force Feedback with amplified piezoel
|
||||
|
||||
## Single degree-of-freedom isolator {#single-degree-of-freedom-isolator}
|
||||
|
||||
Figure [1](#orgec40a2d) shows a picture of the amplified piezoelectric stack.
|
||||
Figure [1](#org4fea547) shows a picture of the amplified piezoelectric stack.
|
||||
The piezoelectric actuator is divided into two parts: one is used as an actuator, and the other one is used as a force sensor.
|
||||
|
||||
<a id="orgec40a2d"></a>
|
||||
<a id="org4fea547"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/souleille18_model_piezo.png" caption="Figure 1: Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator" >}}
|
||||
|
||||
@@ -61,36 +61,38 @@ and the control force is given by:
|
||||
f = F\_s G(s) = F\_s \frac{g}{s}
|
||||
\end{equation}
|
||||
|
||||
The effect of the controller are shown in Figure [2](#org656442f):
|
||||
The effect of the controller are shown in Figure [2](#orgfc78016):
|
||||
|
||||
- the resonance peak is almost critically damped
|
||||
- the passive isolation \\(\frac{x\_1}{w}\\) is not degraded at high frequencies
|
||||
- the degradation of the compliance \\(\frac{x\_1}{F}\\) induced by feedback is limited at \\(\frac{1}{k\_1}\\)
|
||||
- the fraction of the force transmitted to the payload that is measured by the force sensor is reduced at low frequencies
|
||||
|
||||
<a id="org656442f"></a>
|
||||
<a id="orgfc78016"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/souleille18_tf_iff_result.png" caption="Figure 2: Matrix of transfer functions from input (w, f, F) to output (Fs, x1) in open loop (blue curves) and closed loop (dashed red curves)" >}}
|
||||
|
||||
<a id="orgd1fa41a"></a>
|
||||
<a id="org86440e0"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/souleille18_root_locus.png" caption="Figure 3: Single DoF system. Comparison between the theoretical (solid curve) and the experimental (crosses) root-locus" >}}
|
||||
|
||||
|
||||
## Flexible payload mounted on three isolators {#flexible-payload-mounted-on-three-isolators}
|
||||
|
||||
A heavy payload is mounted on a set of three isolators (Figure [4](#org59a9fbf)).
|
||||
A heavy payload is mounted on a set of three isolators (Figure [4](#org2b1d225)).
|
||||
The payload consists of two masses, connected through flexible blades such that the flexible resonance of the payload in the vertical direction is around 65Hz.
|
||||
|
||||
<a id="org59a9fbf"></a>
|
||||
<a id="org2b1d225"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/souleille18_setup_flexible_payload.png" caption="Figure 4: Right: picture of the experimental setup. It consists of a flexible payload mounted on a set of three isolators. Left: simplified sketch of the setup, showing only the vertical direction" >}}
|
||||
|
||||
As shown in Figure [5](#orgb30c1f0), both the suspension modes and the flexible modes of the payload can be critically damped.
|
||||
As shown in Figure [5](#orge25f187), both the suspension modes and the flexible modes of the payload can be critically damped.
|
||||
|
||||
<a id="orgb30c1f0"></a>
|
||||
<a id="orge25f187"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/souleille18_result_damping_transmissibility.png" caption="Figure 5: Transmissibility between the table top \\(w\\) and \\(m\_1\\)" >}}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="souleille18_concep_activ_mount_space_applic">Souleille, A., Lampert, T., Lafarga, V., Hellegouarch, S., Rondineau, A., Rodrigues, Gon\ccalo, & Collette, C., *A concept of active mount for space applications*, CEAS Space Journal, *10(2)*, 157–165 (2018). </a> [↩](#d5c1263eebe6caa1e91b078b620d72f1)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org91c3531"></a>Souleille, Adrien, Thibault Lampert, V Lafarga, Sylvain Hellegouarch, Alan Rondineau, Gonçalo Rodrigues, and Christophe Collette. 2018. “A Concept of Active Mount for Space Applications.” _CEAS Space Journal_ 10 (2). Springer:157–65.
|
||||
|
@@ -8,8 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="85f81ff678aabc195636437548e4234a"><a class="reference-link" href="#tang18_decen_vibrat_contr_voice_coil" title="Jie Tang, Dengqing Cao \& Tianhu Yu, Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments, {Proceedings of the Institution of Mechanical Engineers,
|
||||
Part C: Journal of Mechanical Engineering Science}, v(1), 132-145 (2018).">(Jie Tang {\it et al.}, 2018)</a></sup>
|
||||
: ([Tang, Cao, and Yu 2018](#org6d9be33))
|
||||
|
||||
Author(s)
|
||||
: Tang, J., Cao, D., & Yu, T.
|
||||
@@ -17,5 +16,7 @@ Author(s)
|
||||
Year
|
||||
: 2018
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="tang18_decen_vibrat_contr_voice_coil">Tang, J., Cao, D., & Yu, T., *Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments*, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, *233(1)*, 132–145 (2018). http://dx.doi.org/10.1177/0954406218756941</a> [↩](#85f81ff678aabc195636437548e4234a)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6d9be33"></a>Tang, Jie, Dengqing Cao, and Tianhu Yu. 2018. “Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments.” _Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science_ 233 (1):132–45. <https://doi.org/10.1177/0954406218756941>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Nano Active Stabilization System]({{< relref "nano_active_stabilization_system" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="1bccbe15e35ed02229afbc6528c5057e"><a class="reference-link" href="#wang12_autom_marker_full_field_hard" title="Jun Wang, Yu-chen Karen Chen, Qingxi Yuan, Andrei, Tkachuk, Can Erdonmez, Benjamin Hornberger, Michael \& Feser, Automated Markerless Full Field Hard X-Ray Microscopic Tomography At Sub-50 Nm 3-dimension Spatial Resolution, {Applied Physics Letters}, v(14), 143107 (2012).">(Jun Wang {\it et al.}, 2012)</a></sup>
|
||||
: ([Wang et al. 2012](#org72cf603))
|
||||
|
||||
Author(s)
|
||||
: Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., & Feser, M.
|
||||
@@ -25,5 +25,7 @@ There is a need for markerless nano-tomography
|
||||
**Passive rotational run-out error system**:
|
||||
It uses calibrated metrology disc and capacitive sensors
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="wang12_autom_marker_full_field_hard">Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., & Feser, M., *Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution*, Applied Physics Letters, *100(14)*, 143107 (2012). http://dx.doi.org/10.1063/1.3701579</a> [↩](#1bccbe15e35ed02229afbc6528c5057e)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org72cf603"></a>Wang, Jun, Yu-chen Karen Chen, Qingxi Yuan, Andrei Tkachuk, Can Erdonmez, Benjamin Hornberger, and Michael Feser. 2012. “Automated Markerless Full Field Hard X-Ray Microscopic Tomography at Sub-50 Nm 3-Dimension Spatial Resolution.” _Applied Physics Letters_ 100 (14):143107. <https://doi.org/10.1063/1.3701579>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Vibration Isolation]({{< relref "vibration_isolation" >}}), [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="db95fac7cd46c14e2b4f38e8ca4158fe"><a class="reference-link" href="#wang16_inves_activ_vibrat_isolat_stewar" title="Wang, Xie, Chen, Zhang \& Zhiyi, Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators, {Journal of Sound and Vibration}, v(), 1-19 (2016).">(Wang {\it et al.}, 2016)</a></sup>
|
||||
: ([Wang et al. 2016](#org22df838))
|
||||
|
||||
Author(s)
|
||||
: Wang, C., Xie, X., Chen, Y., & Zhang, Z.
|
||||
@@ -25,7 +25,7 @@ Year
|
||||
The model is compared with a Finite Element model and is shown to give the same results.
|
||||
The proposed model is thus effective.
|
||||
|
||||
<a id="orgd3fa417"></a>
|
||||
<a id="org0dd5327"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/wang16_stewart_platform.png" caption="Figure 1: Stewart Platform" >}}
|
||||
|
||||
@@ -35,11 +35,11 @@ Combines:
|
||||
- the FxLMS-based adaptive inverse control => suppress transmission of periodic vibrations
|
||||
- direct feedback of integrated forces => dampen vibration of inherent modes and thus reduce random vibrations
|
||||
|
||||
Force Feedback (Figure [2](#org55d173d)).
|
||||
Force Feedback (Figure [2](#org0b0c9ed)).
|
||||
|
||||
- the force sensor is mounted **between the base and the strut**
|
||||
|
||||
<a id="org55d173d"></a>
|
||||
<a id="org0b0c9ed"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/wang16_force_feedback.png" caption="Figure 2: Feedback of integrated forces in the platform" >}}
|
||||
|
||||
@@ -53,5 +53,7 @@ Sorts of HAC-LAC control:
|
||||
- All 6 transfer function from actuator force to force sensors are almost the same (gain offset)
|
||||
- Effectiveness of control methods are shown
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="wang16_inves_activ_vibrat_isolat_stewar">Wang, C., Xie, X., Chen, Y., & Zhang, Z., *Investigation on active vibration isolation of a stewart platform with piezoelectric actuators*, Journal of Sound and Vibration, *383()*, 1–19 (2016). http://dx.doi.org/10.1016/j.jsv.2016.07.021</a> [↩](#db95fac7cd46c14e2b4f38e8ca4158fe)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org22df838"></a>Wang, Chaoxin, Xiling Xie, Yanhao Chen, and Zhiyi Zhang. 2016. “Investigation on Active Vibration Isolation of a Stewart Platform with Piezoelectric Actuators.” _Journal of Sound and Vibration_ 383 (November). Elsevier BV:1–19. <https://doi.org/10.1016/j.jsv.2016.07.021>.
|
||||
|
@@ -9,7 +9,7 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: <sup id="44caf201a37b1b3af63de65257785085"><a class="reference-link" href="#yun20_inves_two_stage_vibrat_suppr" title="Hai Yun, Lei Liu, Qing Li \& Hongjie Yang, Investigation on Two-Stage Vibration Suppression and Precision Pointing for Space Optical Payloads, {Aerospace Science and Technology}, v(nil), 105543 (2020).">(Hai Yun {\it et al.}, 2020)</a></sup>
|
||||
: ([Yun et al. 2020](#org63dfd15))
|
||||
|
||||
Author(s)
|
||||
: Yun, H., Liu, L., Li, Q., & Yang, H.
|
||||
@@ -17,5 +17,7 @@ Author(s)
|
||||
Year
|
||||
: 2020
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="yun20_inves_two_stage_vibrat_suppr">Yun, H., Liu, L., Li, Q., & Yang, H., *Investigation on two-stage vibration suppression and precision pointing for space optical payloads*, Aerospace Science and Technology, *96(nil)*, 105543 (2020). http://dx.doi.org/10.1016/j.ast.2019.105543</a> [↩](#44caf201a37b1b3af63de65257785085)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org63dfd15"></a>Yun, Hai, Lei Liu, Qing Li, and Hongjie Yang. 2020. “Investigation on Two-Stage Vibration Suppression and Precision Pointing for Space Optical Payloads.” _Aerospace Science and Technology_ 96 (nil):105543. <https://doi.org/10.1016/j.ast.2019.105543>.
|
||||
|
@@ -8,7 +8,7 @@ Tags
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="e9037e3bf20089c45ab77215406558ca"><a class="reference-link" href="#zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" title="Zuo, Element and System Design for Active and Passive Vibration Isolation (2004).">(Zuo, 2004)</a></sup>
|
||||
: ([Zuo 2004](#org21a244a))
|
||||
|
||||
Author(s)
|
||||
: Zuo, L.
|
||||
@@ -26,21 +26,23 @@ Year
|
||||
> They found that coupling from flexible modes is much smaller than in soft active mounts in the load (force) feedback.
|
||||
> Note that reaction force actuators can also work with soft mounts or hard mounts.
|
||||
|
||||
<a id="org0286cf1"></a>
|
||||
<a id="org813c7b5"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/zuo04_piezo_spring_series.png" caption="Figure 1: PZT actuator and spring in series" >}}
|
||||
|
||||
<a id="org679f77c"></a>
|
||||
<a id="orgb0453c3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/zuo04_voice_coil_spring_parallel.png" caption="Figure 2: Voice coil actuator and spring in parallel" >}}
|
||||
|
||||
<a id="orged24ee6"></a>
|
||||
<a id="orgc0f3c0e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/zuo04_piezo_plant.png" caption="Figure 3: Transmission from PZT voltage to geophone output" >}}
|
||||
|
||||
<a id="org9b75d10"></a>
|
||||
<a id="org0739a0f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/zuo04_voice_coil_plant.png" caption="Figure 4: Transmission from voice coil voltage to geophone output" >}}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="zuo04_elemen_system_desig_activ_passiv_vibrat_isolat">Zuo, L., *Element and system design for active and passive vibration isolation* (2004). Massachusetts Institute of Technology.</a> [↩](#e9037e3bf20089c45ab77215406558ca)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org21a244a"></a>Zuo, Lei. 2004. “Element and System Design for Active and Passive Vibration Isolation.” Massachusetts Institute of Technology.
|
||||
|
Reference in New Issue
Block a user