Update Content - 2024-12-13
This commit is contained in:
41
content/zettels/relative_gain_array.md
Normal file
41
content/zettels/relative_gain_array.md
Normal file
@@ -0,0 +1,41 @@
|
||||
+++
|
||||
title = "Relative Gain Array"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
Imagine a 2x2 plant:
|
||||
\\[ G(s) = \begin{bmatrix} g\_{11}(s) & g\_{12}(s)\\\ g\_{21}(s) & g\_{22}(s) \end{bmatrix} \\]
|
||||
|
||||
Now suppose a controller \\(k\_{1}(s)\\) is closed on the first loop.
|
||||
The new transfer function from \\(u\_2\\) to \\(y\_2\\) (while the first loop is closed) is :
|
||||
|
||||
\begin{equation}
|
||||
y\_2 = g\_{22} \left[ 1 - \underbrace{\frac{g\_{21}g\_{12}}{g\_{11}g\_{22}}}\_{\phi} \underbrace{\frac{g\_{11} k\_{11}}{1 + g\_{11}k\_{11}}}\_{T\_{11}} \right]
|
||||
\end{equation}
|
||||
|
||||
\\(\phi\\) is called the **interaction index**.
|
||||
\\(T\_{11}\\) is the complementary sensitivity of the first loop (equal to 1 in the bandwidth of the first controller).
|
||||
Therefore, we want \\(\phi \approx 0\\) to have no interaction.
|
||||
|
||||
Similarly, the **relative gain** is defined as:
|
||||
\\[ \Lambda = \frac{1}{1 - \phi} \\]
|
||||
And we want \\(\Lambda \approx 1\\) to have no interaction.
|
||||
|
||||
Note that the scaling of inputs or outputs of the MIMO plant has no effect on \\(\phi\\) or \\(\Lambda\\).
|
||||
|
||||
The **relative gain array** is defined as:
|
||||
\\[ \Lambda(G) = G \star (G^{-1})^{T} \\]
|
||||
where \\(\star\\) means element wise multiplication.
|
||||
|
||||
```matlab
|
||||
RGA = G.*pinv(G.')
|
||||
```
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<./biblio/references.bib>
|
Reference in New Issue
Block a user