Update Content - 2022-03-15
This commit is contained in:
@@ -1,32 +1,34 @@
|
||||
+++
|
||||
title = "Position Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{<relref "inertial_sensors.md#" >}}), [Force Sensors]({{<relref "force_sensors.md#" >}}), [Sensor Fusion]({{<relref "sensor_fusion.md#" >}}), [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}), [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}})
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors.md" >}}), [Force Sensors]({{< relref "force_sensors.md" >}}), [Sensor Fusion]({{< relref "sensor_fusion.md" >}}), [Signal Conditioner]({{< relref "signal_conditioner.md" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})
|
||||
|
||||
|
||||
## Types of Positioning sensors {#types-of-positioning-sensors}
|
||||
|
||||
High precision positioning sensors include:
|
||||
|
||||
- [Interferometers]({{<relref "interferometers.md#" >}})
|
||||
- [Capacitive Sensors]({{<relref "capacitive_sensors.md#" >}})
|
||||
- [LVDT]({{<relref "linear_variable_differential_transformers.md#" >}})
|
||||
- [Eddy Current Sensors]({{<relref "eddy_current_sensors.md#" >}})
|
||||
- [Encoders]({{<relref "encoders.md#" >}})
|
||||
- [Interferometers]({{< relref "interferometers.md" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors.md" >}})
|
||||
- [LVDT]({{< relref "linear_variable_differential_transformers.md" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors.md" >}})
|
||||
- [Encoders]({{< relref "encoders.md" >}})
|
||||
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org654bd0b)) ([Notes]({{<relref "fleming13_review_nanom_resol_posit_sensor.md#" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (<a href="#citeproc_bib_item_2">Fleming 2013</a>) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor.md" >}}))
|
||||
|
||||
Table [1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>).
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a></span>:
|
||||
Characteristics of relative measurement sensors <a class='org-ref-reference' href="#collette11_review">collette11_review</a>
|
||||
Characteristics of relative measurement sensors
|
||||
</div>
|
||||
|
||||
| Technology | Frequency | Resolution | Range | T Range |
|
||||
@@ -38,31 +40,38 @@ High precision positioning sensors include:
|
||||
| Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C |
|
||||
| Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
|
||||
|
||||
Table [2](#table--tab:summary-position-sensors) it taken from (<a href="#citeproc_bib_item_2">Fleming 2013</a>).
|
||||
|
||||
<a id="table--tab:summary-position-sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\)
|
||||
</div>
|
||||
|
||||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||||
|----------------|--------------------------------|---------|------------|----------|-----------|
|
||||
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
|
||||
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
|
||||
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
|
||||
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
|
||||
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
|
||||
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
|
||||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||||
|----------------|--------------------------------|---------|------------|-------------|-----------|
|
||||
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
|
||||
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
|
||||
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
|
||||
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
|
||||
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
|
||||
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
|
||||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
|
||||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||||
|
||||
<a id="orgff7dc3a"></a>
|
||||
Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_3">Thurner et al. 2015</a>).
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="Figure 1: Overview of range and precision of different position displacement sensors. Taken from <sup id=\"53230532ada812541a7cd984b3aa2662\"><a href=\"#thurner15_fiber_based_distan_sensin_inter\" title=\"Thurner, Quacquarelli, Braun, Pierre-Fran\ccois, Dal Savio, Karrai \& Khaled, Fiber-Based Distance Sensing Interferometry, {Applied optics}, v(10), 3051--3063 (2015).\">thurner15_fiber_based_distan_sensin_inter</a></sup>" >}}
|
||||
<a id="figure--fig:position-sensors-thurner15"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="<span class=\"figure-number\">Figure 1: </span>Overview of range and precision of different position displacement sensors" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org654bd0b"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190 (nil): 106–26. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 3051–63.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user