Update Content - 2022-03-15

This commit is contained in:
2022-03-15 16:40:48 +01:00
parent e6390908c4
commit 22fb3361a5
148 changed files with 3981 additions and 3197 deletions

View File

@@ -33,7 +33,7 @@ Tags
### Model {#model}
A model of a multi-layer monolithic piezoelectric stack actuator is described in <fleming10_nanop_system_with_force_feedb> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb.md" >}})).
A model of a multi-layer monolithic piezoelectric stack actuator is described in (<a href="#citeproc_bib_item_2">Fleming 2010</a>) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb.md" >}})).
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
@@ -57,12 +57,12 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in <claeyssen07_amplif_piezoel_actuat>:
The Amplified Piezo Actuators principle is presented in (<a href="#citeproc_bib_item_1">Claeyssen et al. 2007</a>):
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification.
A model of an amplified piezoelectric actuator is described in <lucinskis16_dynam_charac>.
A model of an amplified piezoelectric actuator is described in (<a href="#citeproc_bib_item_3">Lucinskis and Mangeot 2016</a>).
<a id="figure--fig:ling16-topology-piezo-mechanism-types"></a>
@@ -201,3 +201,12 @@ When an external load is applied, the stiffness of the load (\\(k\_e\\)) determi
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}).
Limitations of the electronics is discussed in [Design, modeling and control of nanopositioning systems]({{< relref "fleming14_desig_model_contr_nanop_system.md" >}}).
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static &#38; Dynamic Applications.” <i>Ferroelectrics</i> 351 (1): 314. doi:<a href="https://doi.org/10.1080/00150190701351865">10.1080/00150190701351865</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 43347. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”</div>
</div>