Update Content - 2022-03-15
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Active Damping"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -9,9 +9,12 @@ Tags
|
||||
|
||||
There are two main control architecture to actively damp structures:
|
||||
|
||||
- [Integral Force Feedback]({{< relref "integral_force_feedback" >}})
|
||||
- [Direct Velocity Feedback]({{< relref "direct_velocity_feedback" >}})
|
||||
- [Integral Force Feedback]({{< relref "integral_force_feedback.md" >}})
|
||||
- [Direct Velocity Feedback]({{< relref "direct_velocity_feedback.md" >}})
|
||||
|
||||
The idea is to apply a force proportional to the velocity (either relative or inertial) of the structure.
|
||||
|
||||
These are usually applied in a collocated way, meaning that the actuator and sensors are collocated (fixed to the same DoF), in order to have guaranteed stability.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Active Isolation Platforms"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Vibration Isolation]({{<relref "vibration_isolation.md#" >}})
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -15,14 +15,14 @@ Tags
|
||||
|-----------------------------------------------------------------------------------------------|-------------|
|
||||
| [TMC](https://www.techmfg.com/) | USA |
|
||||
| [Newport](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA |
|
||||
| [IDE](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany |
|
||||
| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide_ID=42) | USA |
|
||||
| [IDE](https://www.ideworld.com/en/active_vibration_isolation.html) | Germany |
|
||||
| [Harvard Apparatus](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA |
|
||||
| [Herzan](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA |
|
||||
| [Standa](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania |
|
||||
| [Standa](http://www.standa.lt/products/catalog/optical_tables?item=335) | Lithuania |
|
||||
| [Table Stable](http://www.tablestable.com/en/products/list/2/) | Switzerland |
|
||||
| [Accurion](https://www.halcyonics.com/active-vibration-isolation-products) | Germany |
|
||||
| [Vibiso](https://vibiso.com/?page%5Fid=3433) | USA |
|
||||
| [Vibiso](https://vibiso.com/?page_id=3433) | USA |
|
||||
|
||||
|
||||
## Vibration Isolating Pads {#vibration-isolating-pads}
|
||||
@@ -30,3 +30,9 @@ Tags
|
||||
| Manufacturer | links | Country |
|
||||
|--------------|----------------------------------|---------|
|
||||
| ACE | [link](https://www.ace-ace.com/) | Germany |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,20 +1,20 @@
|
||||
+++
|
||||
title = "Actuator Fusion"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Complementary Filters]({{< relref "complementary_filters" >}})
|
||||
: [Complementary Filters]({{< relref "complementary_filters.md" >}})
|
||||
|
||||
([Beijen et al. 2019](#orgc6f7554))
|
||||
|
||||
([Beijen 2018](#org8e8fef4)) (section 6.3.1)
|
||||
(<a href="#citeproc_bib_item_2">Beijen et al. 2019</a>)
|
||||
|
||||
(<a href="#citeproc_bib_item_1">Beijen 2018</a>) (section 6.3.1)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org8e8fef4"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
|
||||
|
||||
<a id="orgc6f7554"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:106–16. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” <i>Mechatronics</i> 61: 106–16. doi:<a href="https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005">https://doi.org/10.1016/j.mechatronics.2019.06.005</a>.</div>
|
||||
</div>
|
||||
|
@@ -9,22 +9,30 @@ Tags
|
||||
|
||||
Links to specific actuators:
|
||||
|
||||
- [Voice Coil Actuators]({{<relref "voice_coil_actuators.md#" >}})
|
||||
- [Piezoelectric Actuators]({{<relref "piezoelectric_actuators.md#" >}})
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators.md" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators.md" >}})
|
||||
|
||||
|
||||
## How to choose the correct actuator for my application? {#how-to-choose-the-correct-actuator-for-my-application}
|
||||
|
||||
For vibration isolation:
|
||||
|
||||
- In <ito16_compar_class_high_precis_actuat>, the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{<relref "ito16_compar_class_high_precis_actuat.md#" >}}))
|
||||
- In (<a href="#citeproc_bib_item_1">Ito and Schitter 2016</a>), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat.md" >}}))
|
||||
|
||||
|
||||
## Brush-less DC Motor {#brush-less-dc-motor}
|
||||
|
||||
- <yedamale03_brush_dc_bldc_motor_fundam>
|
||||
- (<a href="#citeproc_bib_item_2">Yedamale 2003</a>)
|
||||
|
||||
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
|
||||
|
||||
|
||||
## [Stepper Motor]({{<relref "stepper_motor.md#" >}}) {#stepper-motor--stepper-motor-dot-md}
|
||||
## [Stepper Motor]({{< relref "stepper_motor.md" >}}) {#stepper-motor--stepper-motor-dot-md}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>Ieee/Asme Transactions on Mechatronics</i> 21 (2): 1169–78. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (Bldc) Motor Fundamentals.” <i>Microchip Technology Inc</i> 20: 3–15.</div>
|
||||
</div>
|
||||
|
@@ -14,7 +14,7 @@ Tags
|
||||
|
||||
<https://dewesoft.com/daq/types-of-adc-converters>
|
||||
|
||||
- Delta Sigma <baker11_how_delta_sigma_adcs_work_part>
|
||||
- Delta Sigma (<a href="#citeproc_bib_item_1">Baker 2011</a>)
|
||||
- Successive Approximation
|
||||
|
||||
|
||||
@@ -86,3 +86,10 @@ The quantization is:
|
||||
|
||||
|
||||
## Oversampling {#oversampling}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” <i>Analog Applications</i> 7.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,18 @@
|
||||
+++
|
||||
title = "Bipolar Transistor"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<a id="org67aca6e"></a>
|
||||
<a id="figure--fig:bipolar-transistor-basic-circuits"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bipolar_transistor_basic_circuits.svg" caption="Figure 1: 5 basic circuits using the bipolar transistor" >}}
|
||||
{{< figure src="/ox-hugo/bipolar_transistor_basic_circuits.svg" caption="<span class=\"figure-number\">Figure 1: </span>5 basic circuits using the bipolar transistor" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Cables"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Connectors]({{<relref "connectors.md#" >}})
|
||||
: [Connectors]({{< relref "connectors.md" >}})
|
||||
|
||||
|
||||
## Typical Cables {#typical-cables}
|
||||
@@ -30,3 +30,9 @@ Tags
|
||||
## Software {#software}
|
||||
|
||||
- [WireViz](https://github.com/formatc1702/WireViz) is a nice software to easily document cables and wiring harnesses
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Capacitive Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
: [Position Sensors]({{< relref "position_sensors.md" >}})
|
||||
|
||||
|
||||
## Description of Capacitive Sensors {#description-of-capacitive-sensors}
|
||||
@@ -29,3 +29,9 @@ Tags
|
||||
| [Capacitec](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
|
||||
| [MTIinstruments](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA |
|
||||
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Charge Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
: [Electronics]({{< relref "electronics.md" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
@@ -18,19 +18,19 @@ This can be typically used to interface with piezoelectric sensors.
|
||||
|
||||
## Basic Circuit {#basic-circuit}
|
||||
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org0d411fa) (taken from ([Fleming 2010](#org7834496))) and Figure [2](#org1c3e25d) (taken from ([Schmidt, Schitter, and Rankers 2014](#orgd26dd11)))
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#figure--fig:charge-amplifier-circuit) (taken from (<a href="#citeproc_bib_item_1">Fleming 2010</a>)) and Figure [2](#figure--fig:charge-amplifier-circuit-bis) (taken from (<a href="#citeproc_bib_item_2">Schmidt, Schitter, and Rankers 2014</a>))
|
||||
|
||||
<a id="org0d411fa"></a>
|
||||
<a id="figure--fig:charge-amplifier-circuit"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="<span class=\"figure-number\">Figure 1: </span>Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||
|
||||
<a id="org1c3e25d"></a>
|
||||
<a id="figure--fig:charge-amplifier-circuit-bis"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="<span class=\"figure-number\">Figure 2: </span>A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||
|
||||
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
||||
|
||||
The gain of the charge amplified (Figure [1](#org0d411fa)) is equal to:
|
||||
The gain of the charge amplified (Figure [1](#figure--fig:charge-amplifier-circuit)) is equal to:
|
||||
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
||||
|
||||
|
||||
@@ -41,16 +41,16 @@ The gain of the charge amplified (Figure [1](#org0d411fa)) is equal to:
|
||||
| [PCB](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
|
||||
| [HBM](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||
| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
| [MMF](https://www.mmf.de/signal_conditioners.htm) | Germany |
|
||||
| [DJB](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
|
||||
| [MTI Instruments](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
|
||||
| [Sinocera](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
||||
| [L-Card](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org7834496"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="orgd26dd11"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. <i>The Design of High Performance Mechatronics - 2nd Revised Edition</i>. Ios Press.</div>
|
||||
</div>
|
||||
|
@@ -1,16 +1,16 @@
|
||||
+++
|
||||
title = "Collocated Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Position Sensors]({{< relref "position_sensors" >}}), [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
: [Actuators]({{< relref "actuators.md" >}}), [Force Sensors]({{< relref "force_sensors.md" >}}), [Position Sensors]({{< relref "position_sensors.md" >}}), [Inertial Sensors]({{< relref "inertial_sensors.md" >}})
|
||||
|
||||
|
||||
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
|
||||
|
||||
According to ([Preumont 2018](#orgbf8f4c5)):
|
||||
According to (<a href="#citeproc_bib_item_1">Preumont 2018</a>):
|
||||
|
||||
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
|
||||
>
|
||||
@@ -19,26 +19,25 @@ According to ([Preumont 2018](#orgbf8f4c5)):
|
||||
|
||||
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
|
||||
|
||||
From Figure [1](#org5d460f9), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
From Figure [1](#figure--fig:preumont18-nearly-collocated-schematic), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
|
||||
<a id="org5d460f9"></a>
|
||||
<a id="figure--fig:preumont18-nearly-collocated-schematic"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
|
||||
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="<span class=\"figure-number\">Figure 1: </span>Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
|
||||
|
||||
|
||||
## Piezoelectric Stack as a sensor/actuator pair {#piezoelectric-stack-as-a-sensor-actuator-pair}
|
||||
|
||||
One can use on part of a piezoelectric stack as an actuator and the other part as a sensor.
|
||||
One can use on part of a [Piezoelectric Stack]({{< relref "piezoelectric_actuators.md" >}}) as an actuator and the other part as a sensor.
|
||||
|
||||
At some frequency, the sensor/actuator pair will not be collocated anymore.
|
||||
|
||||
If we want to be collocated up to the highest possible frequency, the sensor part should be made small.
|
||||
Of course, this will reduce the sensibility.
|
||||
|
||||
- [ ] What happens is small pieces of actuators are mixed with small pieces of sensors?
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgbf8f4c5"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Complementary Filters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -10,10 +10,11 @@ Tags
|
||||
|
||||
## Complementary Filters Synthesis {#complementary-filters-synthesis}
|
||||
|
||||
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#org066e272)).
|
||||
|
||||
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis (<a href="#citeproc_bib_item_1">Dehaeze, Vermat, and Collette 2019</a>).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org066e272"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 459–64. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Dehaeze, Thomas, Mohit Vermat, and Christophe Collette. 2019. “Complementary Filters Shaping Using $h_\Infty$ Synthesis.” In <i>7th International Conference on Control, Mechatronics and Automation (Iccma)</i>, 459–64. doi:<a href="https://doi.org/10.1109/ICCMA46720.2019.8988642">10.1109/ICCMA46720.2019.8988642</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Connectors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Cables]({{<relref "cables.md#" >}})
|
||||
: [Cables]({{< relref "cables.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -20,8 +20,14 @@ Tags
|
||||
|
||||
## BNC {#bnc}
|
||||
|
||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgf757f74).
|
||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#figure--fig:bnc-50-75-ohms).
|
||||
|
||||
<a id="orgf757f74"></a>
|
||||
<a id="figure--fig:bnc-50-75-ohms"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}
|
||||
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="<span class=\"figure-number\">Figure 1: </span>75Ohms and 50Ohms BNC connectors" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Cubic Architecture"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -13,13 +13,14 @@ Tags
|
||||
|
||||
## Special Properties {#special-properties}
|
||||
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org2ea9cff)))
|
||||
Cubic Stewart Platforms can be decoupled provided that (from (<a href="#citeproc_bib_item_1">Chen and McInroy 2000</a>))
|
||||
|
||||
> 1. The payload mass-inertia matrix is diagonal
|
||||
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2ea9cff"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,9 +1,15 @@
|
||||
+++
|
||||
title = "Digital to Analog Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
: [Electronics]({{< relref "electronics.md" >}})
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Direct Velocity Feedback"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Active Damping]({{< relref "active_damping" >}})
|
||||
: [Active Damping]({{< relref "active_damping.md" >}})
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,18 +1,18 @@
|
||||
+++
|
||||
title = "Dynamic Error Budgeting"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#orgda61e4e)).
|
||||
A good introduction to Dynamic Error Budgeting is given in (<a href="#citeproc_bib_item_1">Monkhorst 2004</a>).
|
||||
|
||||
|
||||
## Step by Step process {#step-by-step-process}
|
||||
|
||||
Taken from ([Monkhorst 2004](#orgda61e4e)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
Taken from (<a href="#citeproc_bib_item_1">Monkhorst 2004</a>): ([Notes]({{< relref "monkhorst04_dynam_error_budget.md" >}}))
|
||||
|
||||
> Step by step, the process is as follows:
|
||||
>
|
||||
@@ -26,7 +26,8 @@ Taken from ([Monkhorst 2004](#orgda61e4e)): ([Notes]({{< relref "monkhorst04_dyn
|
||||
> Iterate until the error budget is meet.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgda61e4e"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Eddy Current Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
: [Position Sensors]({{< relref "position_sensors.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -17,5 +17,11 @@ Tags
|
||||
| [Lion Precision](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
||||
| [Cedrat](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
|
||||
| [Kaman](https://www.kamansensors.com/product/smt-9700/) | USA |
|
||||
| [Keyence](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
|
||||
| [Keyence](https://www.keyence.com/ss/products/measure/measurement_library/type/inductive/) | USA |
|
||||
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,11 +1,11 @@
|
||||
+++
|
||||
title = "Electronic Active Filters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Operational Amplifiers]({{< relref "operational_amplifiers" >}})
|
||||
: [Operational Amplifiers]({{< relref "operational_amplifiers.md" >}})
|
||||
|
||||
TODOS:
|
||||
|
||||
@@ -29,14 +29,14 @@ With:
|
||||
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
|
||||
- \\(\xi = \frac{C\_2}{C\_1}\\)
|
||||
|
||||
<a id="orgb2c3453"></a>
|
||||
<a id="figure--fig:elec-active-second-order-low-pass-filter"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_active_second_order_low_pass_filter.png" caption="Figure 1: Second Order Low Pass Filter" >}}
|
||||
{{< figure src="/ox-hugo/elec_active_second_order_low_pass_filter.png" caption="<span class=\"figure-number\">Figure 1: </span>Second Order Low Pass Filter" >}}
|
||||
|
||||
|
||||
## High Pass Filter {#high-pass-filter}
|
||||
|
||||
Same as [1](#orgb2c3453) but by exchanging R1 with C1 and R2 with C2
|
||||
Same as [1](#figure--fig:elec-active-second-order-low-pass-filter) but by exchanging R1 with C1 and R2 with C2
|
||||
|
||||
\begin{equation}
|
||||
\frac{V\_o}{V\_i}(s) = \frac{R^2 C\_1 C\_2 s^2}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
|
||||
@@ -46,3 +46,9 @@ With:
|
||||
|
||||
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
|
||||
- \\(\xi = \frac{C\_2}{C\_1}\\)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Electronic Passive Filters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -16,27 +16,33 @@ TODOS:
|
||||
|
||||
## First Order Low Pass Filter {#first-order-low-pass-filter}
|
||||
|
||||
<a id="org1c6b488"></a>
|
||||
<a id="figure--fig:elec-passive-first-order-low-pass-filter"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_first_order_low_pass_filter.png" caption="Figure 1: First Order Low Pass Filter using an RC circuit" >}}
|
||||
{{< figure src="/ox-hugo/elec_passive_first_order_low_pass_filter.png" caption="<span class=\"figure-number\">Figure 1: </span>First Order Low Pass Filter using an RC circuit" >}}
|
||||
|
||||
|
||||
## First Order High Pass Filter {#first-order-high-pass-filter}
|
||||
|
||||
<a id="orgecf7617"></a>
|
||||
<a id="figure--fig:elec-passive-first-order-high-pass-filter"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_first_order_high_pass_filter.png" caption="Figure 2: First Order High Pass Filter using an RC circuit" >}}
|
||||
{{< figure src="/ox-hugo/elec_passive_first_order_high_pass_filter.png" caption="<span class=\"figure-number\">Figure 2: </span>First Order High Pass Filter using an RC circuit" >}}
|
||||
|
||||
|
||||
## Second Order Low Pass Filter {#second-order-low-pass-filter}
|
||||
|
||||
<a id="orgcfc4c15"></a>
|
||||
<a id="figure--fig:elec-passive-second-order-low-pass-filter"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_second_order_low_pass_filter.png" caption="Figure 3: Second Order Low Pass Filter using an RLC circuit" >}}
|
||||
{{< figure src="/ox-hugo/elec_passive_second_order_low_pass_filter.png" caption="<span class=\"figure-number\">Figure 3: </span>Second Order Low Pass Filter using an RLC circuit" >}}
|
||||
|
||||
|
||||
## Second Order High Pass Filter {#second-order-high-pass-filter}
|
||||
|
||||
<a id="org0b32ffe"></a>
|
||||
<a id="figure--fig:elec-passive-second-order-high-pass-filter"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/elec_passive_second_order_high_pass_filter.png" caption="Figure 4: Second Order High Pass Filter using an RLC circuit" >}}
|
||||
{{< figure src="/ox-hugo/elec_passive_second_order_high_pass_filter.png" caption="<span class=\"figure-number\">Figure 4: </span>Second Order High Pass Filter using an RLC circuit" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Electronics"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Encoders"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
: [Position Sensors]({{< relref "position_sensors.md" >}})
|
||||
|
||||
There are two main types of encoders: optical encoders, and magnetic encoders.
|
||||
|
||||
@@ -15,7 +15,13 @@ There are two main types of encoders: optical encoders, and magnetic encoders.
|
||||
|
||||
| Manufacturers | Country |
|
||||
|---------------------------------------------------------------------------------|---------|
|
||||
| [Heidenhain](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
|
||||
| [Heidenhain](https://www.heidenhain.com/en_US/products/linear-encoders/) | Germany |
|
||||
| [MicroE Systems](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
|
||||
| [Renishaw](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
|
||||
| [Celera Motion](https://www.celeramotion.com/microe/) | USA |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Finite Element Model"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -12,18 +12,17 @@ Tags
|
||||
|
||||
Some resources:
|
||||
|
||||
- ([Hatch 2000](#orgddee845)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- ([Khot and Yelve 2011](#orgb0a5955))
|
||||
- ([Kovarac et al. 2015](#org7660da4))
|
||||
- (<a href="#citeproc_bib_item_1">Hatch 2000</a>) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys.md" >}}))
|
||||
- (<a href="#citeproc_bib_item_2">Khot and Yelve 2011</a>)
|
||||
- (<a href="#citeproc_bib_item_3">Kovarac et al. 2015</a>)
|
||||
|
||||
The idea is to extract reduced state space model from Ansys into Matlab.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgddee845"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
|
||||
|
||||
<a id="orgb0a5955"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:953–58.
|
||||
|
||||
<a id="org7660da4"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 37–41.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Hatch, Michael R. 2000. <i>Vibration Simulation Using Matlab and Ansys</i>. CRC Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using Ansys and Matlab.” <i>Journal of Vibration and Control</i> 17 (6). SAGE Publications Sage UK: London, England: 953–58.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create Siso State Space Model of Main Spindle from Ansys Model.” In <i>12th International Scientific Conference, Novi Sad, Serbia</i>, 37–41.</div>
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Flexible Joints"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -12,16 +12,16 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Lobontiu 2002](#orgb45af18))
|
||||
- ([Henein 2003](#org8ce4916))
|
||||
- ([Smith 2005](#orgccbed32))
|
||||
- ([Soemers 2011](#org772b663))
|
||||
- ([Cosandier 2017](#org7ebf41f))
|
||||
- (<a href="#citeproc_bib_item_4">Lobontiu 2002</a>)
|
||||
- (<a href="#citeproc_bib_item_3">Henein 2003</a>)
|
||||
- (<a href="#citeproc_bib_item_6">Smith 2005</a>)
|
||||
- (<a href="#citeproc_bib_item_7">Soemers 2011</a>)
|
||||
- (<a href="#citeproc_bib_item_2">Cosandier 2017</a>)
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From ([Chen and McInroy 2000](#org64f8175)):
|
||||
From (<a href="#citeproc_bib_item_1">Chen and McInroy 2000</a>):
|
||||
|
||||
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
@@ -30,25 +30,20 @@ From ([Chen and McInroy 2000](#org64f8175)):
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
- ([Smith 2000](#org299921c))
|
||||
- ([Lobontiu 2002](#orgb45af18))
|
||||
- ([Henein 2003](#org8ce4916))
|
||||
- ([Cosandier 2017](#org7ebf41f))
|
||||
|
||||
- (<a href="#citeproc_bib_item_5">Smith 2000</a>)
|
||||
- (<a href="#citeproc_bib_item_4">Lobontiu 2002</a>)
|
||||
- (<a href="#citeproc_bib_item_3">Henein 2003</a>)
|
||||
- (<a href="#citeproc_bib_item_2">Cosandier 2017</a>)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org64f8175"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org7ebf41f"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org8ce4916"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="orgb45af18"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="org299921c"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
||||
|
||||
<a id="orgccbed32"></a>———. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
|
||||
<a id="org772b663"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Cosandier, Florent. 2017. <i>Flexure Mechanism Design</i>. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Henein, Simon. 2003. <i>Conception Des Guidages Flexibles</i>. Lausanne, Suisse: Presses polytechniques et universitaires romandes.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Lobontiu, Nicolae. 2002. <i>Compliant Mechanisms: Design of Flexure Hinges</i>. CRC press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Smith, Stuart T. 2000. <i>Flexures: Elements of Elastic Mechanisms</i>. Crc Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>———. 2005. <i>Foundations of Ultra-Precision Mechanism Design</i>. Vol. 2. CRC Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Soemers, Herman. 2011. <i>Design Principles for Precision Mechanisms</i>. T-Pointprint.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Force Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}), [Modal Analysis]({{<relref "modal_analysis.md#" >}})
|
||||
: [Signal Conditioner]({{< relref "signal_conditioner.md" >}}), [Modal Analysis]({{< relref "modal_analysis.md" >}})
|
||||
|
||||
|
||||
## Technologies {#technologies}
|
||||
@@ -18,11 +18,11 @@ There are two main technique for force sensors:
|
||||
|
||||
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
|
||||
|
||||
Main differences between the two are shown in Figure [1](#orgc9e9a88).
|
||||
Main differences between the two are shown in Figure [1](#figure--fig:force-sensor-piezo-vs-strain-gauge).
|
||||
|
||||
<a id="orgc9e9a88"></a>
|
||||
<a id="figure--fig:force-sensor-piezo-vs-strain-gauge"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
|
||||
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="<span class=\"figure-number\">Figure 1: </span>Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
|
||||
|
||||
|
||||
## Piezoelectric Force Sensors {#piezoelectric-force-sensors}
|
||||
@@ -30,23 +30,23 @@ Main differences between the two are shown in Figure [1](#orgc9e9a88).
|
||||
|
||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org024e377)) ([Notes]({{<relref "fleming10_nanop_system_with_force_feedb.md#" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in (<a href="#citeproc_bib_item_1">Fleming 2010</a>) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb.md" >}})).
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Country |
|
||||
|---------------------------------------------------------------------------------------------------|---------|
|
||||
| [PCB](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
|
||||
| [HBM](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
|
||||
| [Kistler](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss |
|
||||
| [MMF](https://www.mmf.de/force%5Ftransducers.htm) | Germany |
|
||||
| [Sinocera](http://www.china-yec.net/sensors/) | China |
|
||||
| Manufacturers | Country |
|
||||
|-------------------------------------------------------------------------------------------------|---------|
|
||||
| [PCB](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
|
||||
| [HBM](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
|
||||
| [Kistler](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv_metrics=metric) | Swiss |
|
||||
| [MMF](https://www.mmf.de/force_transducers.htm) | Germany |
|
||||
| [Sinocera](http://www.china-yec.net/sensors/) | China |
|
||||
|
||||
|
||||
### Signal Conditioner {#signal-conditioner}
|
||||
|
||||
The voltage generated by the piezoelectric material generally needs to be amplified using a [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}).
|
||||
The voltage generated by the piezoelectric material generally needs to be amplified using a [Signal Conditioner]({{< relref "signal_conditioner.md" >}}).
|
||||
|
||||
Either **charge** amplifiers or **voltage** amplifiers can be used.
|
||||
|
||||
@@ -76,7 +76,8 @@ However, if a charge conditioner is used, the signal will be doubled.
|
||||
| [Althen](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands |
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org024e377"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,11 +1,11 @@
|
||||
+++
|
||||
title = "Fractional Order Transfer Functions"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
: [Digital Filters]({{< relref "digital_filters.md" >}})
|
||||
|
||||
|
||||
## Example Using the FOMCON toolbox {#example-using-the-fomcon-toolbox}
|
||||
@@ -21,7 +21,7 @@ Here are the parameters that are used to define the wanted properties of the fra
|
||||
r = 0.5; % Wanted slope, The corresponding phase will be pi*r
|
||||
```
|
||||
|
||||
Then, to create an approximation of a fractional-order operator \\(s^r\\) of order \\(n\\) which is valid in the frequency range \\([\omega\_b\, \omega\_h]\\), the `oustafod` function can be used:
|
||||
Then, to create an approximation of a fractional-order operator \\(s^r\\) of order \\(n\\) which is valid in the frequency range \\([\omega\_b\\, \omega\_h]\\), the `oustafod` function can be used:
|
||||
|
||||
```matlab
|
||||
G = oustafod(r,n,wb,wh);
|
||||
@@ -37,8 +37,14 @@ G =
|
||||
Continuous-time transfer function.
|
||||
```
|
||||
|
||||
Few examples of different slopes are shown in Figure [1](#org9241d6d).
|
||||
Few examples of different slopes are shown in Figure [1](#figure--fig:approximate-deriv-int).
|
||||
|
||||
<a id="org9241d6d"></a>
|
||||
<a id="figure--fig:approximate-deriv-int"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/approximate_deriv_int.png" caption="Figure 1: Example of fractional approximations" >}}
|
||||
{{< figure src="/ox-hugo/approximate_deriv_int.png" caption="<span class=\"figure-number\">Figure 1: </span>Example of fractional approximations" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Granite"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
@@ -15,3 +15,9 @@ Tags
|
||||
|--------------------------------------------------|---------|
|
||||
| [Microplan](https://www.microplan-group.com/fr/) | France |
|
||||
| [Zali](http://zali-precision.it/en/products/) | Italy |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "H Infinity Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -15,3 +15,9 @@ From _Rosenbrock, H. H. (1974). Computer-Aided Control System Design, Academic P
|
||||
> Solutions are constrained by so many requirements that it is virtually impossible to list them all.
|
||||
> The designer finds himself threading a maze of such requirements, attempting to reconcile conflicting demands of cost, performance, easy maintenance, and so on.
|
||||
> A good design usually has strong aesthetic appeal to those who are competent in the subject.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "HAC-HAC"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -9,29 +9,28 @@ Tags
|
||||
|
||||
High-Authority Control/Low-Authority Control
|
||||
|
||||
From ([Preumont 2018](#org4171546)):
|
||||
From (<a href="#citeproc_bib_item_2">Preumont 2018</a>):
|
||||
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org5a821d8). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#figure--fig:hac-lac-control-architecture). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
>
|
||||
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
|
||||
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
|
||||
> - The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)
|
||||
|
||||
<a id="org5a821d8"></a>
|
||||
<a id="figure--fig:hac-lac-control-architecture"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="Figure 1: HAC-LAC Control Architecture" >}}
|
||||
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="<span class=\"figure-number\">Figure 1: </span>HAC-LAC Control Architecture" >}}
|
||||
|
||||
Nice papers:
|
||||
|
||||
- ([Williams and Antsaklis 1989](#orgb65b217))
|
||||
- ([Aubrun 1980](#org9a935c0))
|
||||
|
||||
- (<a href="#citeproc_bib_item_3">Williams and Antsaklis 1989</a>)
|
||||
- (<a href="#citeproc_bib_item_1">Aubrun 1980</a>)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9a935c0"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):444–51. <https://doi.org/10.2514/3.56019>.
|
||||
|
||||
<a id="org4171546"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="orgb65b217"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” <i>Journal of Guidance and Control</i> 3 (5): 444–51. doi:<a href="https://doi.org/10.2514/3.56019">10.2514/3.56019</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In <i>Proceedings of the 28th Ieee Conference on Decision and Control</i>, nil. doi:<a href="https://doi.org/10.1109/cdc.1989.70563">10.1109/cdc.1989.70563</a>.</div>
|
||||
</div>
|
||||
|
@@ -11,8 +11,8 @@ Tags
|
||||
|
||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement (<a href="#citeproc_bib_item_1">Collette, Janssens, Fernandez-Carmona, et al. 2012</a>)
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors (<a href="#citeproc_bib_item_2">Collette, Janssens, Mokrani, et al. 2012</a>)
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement (<a href="#citeproc_bib_item_2">Collette, Janssens, Fernandez-Carmona, et al. 2012</a>)
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors (<a href="#citeproc_bib_item_3">Collette, Janssens, Mokrani, et al. 2012</a>)
|
||||
|
||||
<a id="figure--fig:collette12-absolute-disp-sensors"></a>
|
||||
|
||||
@@ -36,9 +36,11 @@ Wireless Accelerometers
|
||||
|
||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||
|
||||
Several commercial accelerometers are compared in Table [2](#figure--fig:characteristics-accelerometers) (see (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>)).
|
||||
|
||||
<a id="figure--fig:characteristics-accelerometers"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="<span class=\"figure-number\">Figure 2: </span>Characteristics of commercially available accelerometers <collette11_review>" >}}
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="<span class=\"figure-number\">Figure 2: </span>Characteristics of commercially available accelerometers" >}}
|
||||
|
||||
|
||||
## Geophones and Seismometers {#geophones-and-seismometers}
|
||||
@@ -53,6 +55,17 @@ Wireless Accelerometers
|
||||
| [Guralp](https://www.guralp.com/products/surface) | UK |
|
||||
| [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada |
|
||||
|
||||
(<a href="#citeproc_bib_item_1">Collette et al. 2011</a>)
|
||||
|
||||
<a id="figure--fig:characteristics-geophone"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="<span class=\"figure-number\">Figure 3: </span>Characteristics of commercially available geophones <collette11_review>" >}}
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="<span class=\"figure-number\">Figure 3: </span>Characteristics of commercially available geophones" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” <i>Bulletin of the Seismological Society of America</i> 102 (4): 1289–1300. doi:<a href="https://doi.org/10.1785/0120110223">10.1785/0120110223</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In <i>International Conference on Noise and Vibration Engineering (Isma)</i>.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Instrumented Hammer"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Modal Analysis]({{<relref "modal_analysis.md#" >}}), [Force Sensors]({{<relref "force_sensors.md#" >}})
|
||||
: [Modal Analysis]({{< relref "modal_analysis.md" >}}), [Force Sensors]({{< relref "force_sensors.md" >}})
|
||||
|
||||
And instrumented hammer consist of a regular hammer with a force sensor fixed at its tip.
|
||||
|
||||
@@ -18,3 +18,9 @@ And instrumented hammer consist of a regular hammer with a force sensor fixed at
|
||||
| [PCB](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA |
|
||||
| [DJB](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK |
|
||||
| [Dewesoft](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -10,4 +10,12 @@ Tags
|
||||
|
||||
## Self-Sensing for perfect collocation {#self-sensing-for-perfect-collocation}
|
||||
|
||||
This can be done with a [Voice Coil Actuator]({{< relref "voice_coil_actuators.md" >}}) (see <verma20_perfec_colloc_using_self_sensin_elect_actuat>) or with a [Piezoelectric Actuator]({{< relref "piezoelectric_actuators.md" >}}) (see <jansen19_activ_dampin_dynam_struc_using>).
|
||||
This can be done with a [Voice Coil Actuator]({{< relref "voice_coil_actuators.md" >}}) (see (<a href="#citeproc_bib_item_2">Verma, Lafarga, and Collette 2020</a>)) or with a [Piezoelectric Actuator]({{< relref "piezoelectric_actuators.md" >}}) (see (<a href="#citeproc_bib_item_1">Jansen, Butler, and Di Filippo 2019</a>)).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Jansen, Bas, Hans Butler, and Ruben Di Filippo. 2019. “Active Damping of Dynamical Structures Using Piezo Self Sensing.” <i>Ifac-Papersonline</i> 52 (15). Elsevier: 543–48.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Verma, Mohit, Vicente Lafarga, and Christophe Collette. 2020. “Perfect Collocation Using Self-Sensing Electromagnetic Actuator: Application to Vibration Control of Flexible Structures.” <i>Sensors and Actuators a: Physical</i> 313: 112210. doi:<a href="https://doi.org/10.1016/j.sna.2020.112210">10.1016/j.sna.2020.112210</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Interferometers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
: [Position Sensors]({{< relref "position_sensors.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -25,12 +25,12 @@ Tags
|
||||
|
||||
## Reviews {#reviews}
|
||||
|
||||
([Ducourtieux 2018](#org538e4dc), [2018](#org538e4dc); [Bobroff 1993](#org9f4652e), [1993](#org9f4652e); [Thurner et al. 2015](#orgdcf4929), [2015](#orgdcf4929); [Loughridge and Abramovitch 2013](#orgd91ce9e))
|
||||
(<a href="#citeproc_bib_item_2">Ducourtieux 2018</a>, <a href="#citeproc_bib_item_2">2018</a>; <a href="#citeproc_bib_item_1">Bobroff 1993</a>, <a href="#citeproc_bib_item_1">1993</a>; <a href="#citeproc_bib_item_5">Thurner et al. 2015</a>, <a href="#citeproc_bib_item_5">2015</a>; <a href="#citeproc_bib_item_4">Loughridge and Abramovitch 2013</a>)
|
||||
|
||||
|
||||
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
|
||||
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#orgdcf4929))).
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from (<a href="#citeproc_bib_item_5">Thurner et al. 2015</a>)).
|
||||
|
||||
<a id="table--tab:index-air"></a>
|
||||
<div class="table-caption">
|
||||
@@ -56,25 +56,25 @@ Typical characteristics of commercial environmental units are shown in Table [2]
|
||||
Characteristics of Environmental Units
|
||||
</div>
|
||||
|
||||
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|
||||
|-----------|------------------------------|---------------------------|--------------------------|---------------------------------------------|
|
||||
| Attocube | 0.1 | 1 | 2 | 0.5 |
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|
||||
|-----------|------------------------------|---------------------------|---------------------------|---------------------------------------------|
|
||||
| Attocube | 0.1 | 1 | 2 | 0.5 |
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
|
||||
## Interferometer Precision {#interferometer-precision}
|
||||
|
||||
Figure [1](#org24527f3) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org0cf5512))).
|
||||
Figure [1](#figure--fig:position-sensor-interferometer-precision) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from (<a href="#citeproc_bib_item_3">Jang and Kim 2017</a>)).
|
||||
|
||||
<a id="org24527f3"></a>
|
||||
<a id="figure--fig:position-sensor-interferometer-precision"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="<span class=\"figure-number\">Figure 1: </span>Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Sources of uncertainty {#sources-of-uncertainty}
|
||||
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org538e4dc)).
|
||||
Sources of error in laser interferometry are well described in (<a href="#citeproc_bib_item_2">Ducourtieux 2018</a>).
|
||||
|
||||
It includes:
|
||||
|
||||
@@ -82,25 +82,22 @@ It includes:
|
||||
- Variation of refractive index of air, which is dependent of:
|
||||
- Temperature: \\(K\_T \approx 1 ppmK^{-1}\\)
|
||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \\% RH^{-1}\\)
|
||||
- These errors can partially be compensated using an environmental unit.
|
||||
- Air turbulence (Figure [2](#org1d0f37d))
|
||||
- Air turbulence (Figure [2](#figure--fig:interferometers-air-turbulence))
|
||||
- Non linearity
|
||||
|
||||
<a id="org1d0f37d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||
<a id="figure--fig:interferometers-air-turbulence"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="<span class=\"figure-number\">Figure 2: </span>Effect of air turbulences on measurement stability" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9f4652e"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” _Measurement Science and Technology_ 4 (9):907–26. <https://doi.org/10.1088/0957-0233/4/9/001>.
|
||||
|
||||
<a id="org538e4dc"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
|
||||
<a id="org0cf5512"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
||||
<a id="orgd91ce9e"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In _2013 American Control Conference_, nil. <https://doi.org/10.1109/acc.2013.6580402>.
|
||||
|
||||
<a id="orgdcf4929"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” <i>Measurement Science and Technology</i> 4 (9): 907–26. doi:<a href="https://doi.org/10.1088/0957-0233/4/9/001">10.1088/0957-0233/4/9/001</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” doi:<a href="https://doi.org/10.13140/rg.2.2.21044.35205">10.13140/rg.2.2.21044.35205</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” <i>International Journal of Precision Engineering and Manufacturing</i> 18 (12): 1881–90. doi:<a href="https://doi.org/10.1007/s12541-017-0217-y">10.1007/s12541-017-0217-y</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In <i>2013 American Control Conference</i>, nil. doi:<a href="https://doi.org/10.1109/acc.2013.6580402">10.1109/acc.2013.6580402</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 3051–63.</div>
|
||||
</div>
|
||||
|
@@ -1,11 +1,14 @@
|
||||
+++
|
||||
title = "IRR and FIR Filters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Digital Filters]({{< relref "digital_filters" >}})
|
||||
: [Digital Filters]({{< relref "digital_filters.md" >}})
|
||||
|
||||
|
||||
## Comparison {#comparison}
|
||||
|
||||
<div class="table-caption">
|
||||
<span class="table-number">Table 1</span>:
|
||||
@@ -32,7 +35,7 @@ Tags
|
||||
>
|
||||
> The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.
|
||||
|
||||
From ([Shaw and Srinivasan 1990](#org82fbcc5))
|
||||
From (<a href="#citeproc_bib_item_1">Shaw and Srinivasan 1990</a>)
|
||||
|
||||
> The FIR are capable of realizing filters with linear phase shift characteristics and furthermore are less susceptible to signal input and filter coefficient quantization effects.
|
||||
> However, their computational demands are excessively large because of the large number of multiplications and additions to be performed at each sampling interval.
|
||||
@@ -49,7 +52,53 @@ From <https://dsp.stackexchange.com/a/30999>
|
||||
> - Feed-forward control. FIR filters are useful for producing filters that approximate arbitrary frequency responses, hence they can be used to shape a reference signal. A typical example is to use an FIR filter with the inverse frequency response of the plant -- trying to counteract the dynamics of the plant in order to get a desired output. Phase/time-delay is not interfering with the stability or performance since the computation can be done offline. FIR filters can often produce higher performance than IIR filters, especially where there are non-minimum phase zeros.
|
||||
|
||||
|
||||
## Moving Average Filter (FIR) {#moving-average-filter--fir}
|
||||
|
||||
A moving average is just a basic FIR filtering.
|
||||
If the moving average is done over `n` samples, the FIR filter's coefficients are then \\([1/n,\ 1/n,\ \dots,\ 1/n]\\).
|
||||
|
||||
For instance:
|
||||
|
||||
```matlab
|
||||
n = 3;
|
||||
|
||||
b = 1/n*ones(n,1);
|
||||
```
|
||||
|
||||
And we can look at the step response of the filter:
|
||||
|
||||
```matlab
|
||||
y = ones(3*n, 1);
|
||||
y(1:n) = 0;
|
||||
|
||||
outhi = filter(b,1,y);
|
||||
|
||||
figure;
|
||||
plot(outhi, 'ko')
|
||||
```
|
||||
|
||||
<a id="figure--fig:fir-moving-average-step-response"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/fir_moving_average_step_response.png" caption="<span class=\"figure-number\">Figure 1: </span>Step response of the FIR \"moving average filter\"" >}}
|
||||
|
||||
Let's look at the response of the filter in the frequency domain.
|
||||
|
||||
```matlab
|
||||
Fs = 1e3; % Sampling frequency
|
||||
|
||||
freqz(b,1,[],Fs);
|
||||
```
|
||||
|
||||
<a id="figure--fig:fir-moving-average-frequency-reponse"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/fir_moving_average_frequency_reponse.png" caption="<span class=\"figure-number\">Figure 2: </span>Frequency response of the moving average filter" >}}
|
||||
|
||||
|
||||
## FIR Design with Matlab {#fir-design-with-matlab}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org82fbcc5"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” <i>Mechanical Systems and Signal Processing</i> 4 (1): 23–38. doi:<a href="https://doi.org/10.1016/0888-3270(90)90038-m">10.1016/0888-3270(90)90038-m</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Linear variable differential transformers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
: [Position Sensors]({{< relref "position_sensors.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -16,3 +16,9 @@ Tags
|
||||
| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
|
||||
| [Keyence](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
|
||||
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Mass Spring Damper Systems"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
|
||||
|
||||
Let's consider Figure [1](#orgbf5f22b) where:
|
||||
Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where:
|
||||
|
||||
- \\(m\\) is the mass in [kg]
|
||||
- \\(ḱ\\) is the spring stiffness in [N/m]
|
||||
@@ -20,9 +20,9 @@ Let's consider Figure [1](#orgbf5f22b) where:
|
||||
- \\(w\\) is ground motion
|
||||
- \\(x\\) is the absolute mass motion
|
||||
|
||||
<a id="orgbf5f22b"></a>
|
||||
<a id="figure--fig:mass-spring-damper-system"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}}
|
||||
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="<span class=\"figure-number\">Figure 1: </span>Mass Spring Damper System" >}}
|
||||
|
||||
Let's write the transfer function from \\(F\\) to \\(x\\):
|
||||
|
||||
@@ -54,3 +54,9 @@ with:
|
||||
\begin{equation}
|
||||
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
||||
\end{equation}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,22 +1,22 @@
|
||||
+++
|
||||
title = "Matlab"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Simulink]({{< relref "simulink" >}})
|
||||
: [Simulink]({{< relref "simulink.md" >}})
|
||||
|
||||
|
||||
## Resources on Matlab {#resources-on-matlab}
|
||||
|
||||
Books:
|
||||
|
||||
- ([Higham 2017](#org28e00d3))
|
||||
- ([Attaway 2018](#org46f9de5))
|
||||
- ([OverFlow 2018](#orgfac8ed6))
|
||||
- ([Johnson 2010](#org9e4fa10))
|
||||
- ([Hahn and Valentine 2016](#org56f31fb))
|
||||
- (<a href="#citeproc_bib_item_3">Higham 2017</a>)
|
||||
- (<a href="#citeproc_bib_item_1">Attaway 2018</a>)
|
||||
- (<a href="#citeproc_bib_item_5">OverFlow 2018</a>)
|
||||
- (<a href="#citeproc_bib_item_4">Johnson 2010</a>)
|
||||
- (<a href="#citeproc_bib_item_2">Hahn and Valentine 2016</a>)
|
||||
|
||||
|
||||
## Useful Commands {#useful-commands}
|
||||
@@ -79,7 +79,7 @@ To install Toolboxes, the best is to Download the Matlab installer from mathwork
|
||||
Nice functions:
|
||||
|
||||
- <https://github.com/jmrplens/SetFigPaper>
|
||||
- <https://github.com/altmany/export%5Ffig>
|
||||
- <https://github.com/altmany/export_fig>
|
||||
- Matlab's `exportgraphics`
|
||||
- `vfit3` ([link](https://www.sintef.no/projectweb/vectorfitting/)): used to identify transfer functions
|
||||
|
||||
@@ -105,15 +105,12 @@ Nice functions:
|
||||
| `echo` | Display statements during function execution |
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org46f9de5"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
|
||||
<a id="org56f31fb"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
|
||||
<a id="org28e00d3"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
|
||||
<a id="org9e4fa10"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
|
||||
<a id="orgfac8ed6"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Attaway, Stormy. 2018. <i>Matlab : a Practical Introduction to Programming and Problem Solving</i>. Amsterdam: Butterworth-Heinemann.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Hahn, Brian, and Daniel T Valentine. 2016. <i>Essential Matlab for Engineers and Scientists</i>. Academic Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Higham, Desmond. 2017. <i>Matlab Guide</i>. Philadelphia: Society for Industrial and Applied Mathematics.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Johnson, Richard K. 2010. <i>The Elements of Matlab Style</i>. Cambridge University Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>OverFlow, Stack. 2018. <i>Matlab Notes for Professionals</i>. GoalKicker.com.</div>
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Metrology"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Modal Analysis"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Shaker]({{< relref "shaker" >}})
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors.md" >}}), [Shaker]({{< relref "shaker.md" >}})
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Model Predictive Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Motion Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,16 +1,17 @@
|
||||
+++
|
||||
title = "Multivariable Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Norms]({{< relref "norms" >}})
|
||||
|
||||
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org94735a9))
|
||||
: [Norms]({{< relref "norms.md" >}})
|
||||
|
||||
A very nice book about Multivariable Control is (NO_ITEM_DATA:skogestad05_multiv_feedb_contr)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org94735a9"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry">NO_ITEM_DATA:skogestad05_multiv_feedb_contr</div>
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Nano Active Stabilization System"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Nonlinear Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -8,3 +8,9 @@ Tags
|
||||
:
|
||||
|
||||
Lecture about Nonlinear Systems at MIT ([link](http://web.mit.edu/nsl/www/videos/lectures.html)).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Systems and Signals Norms"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -11,15 +11,14 @@ Tags
|
||||
|
||||
Resources:
|
||||
|
||||
- ([Skogestad and Postlethwaite 2007](#orga6846b3))
|
||||
- ([Toivonen 2002](#org300cd1c))
|
||||
- ([Zhang 2011](#org037ea69))
|
||||
- (NO_ITEM_DATA:skogestad05_multiv_feedb_contr)
|
||||
- (<a href="#citeproc_bib_item_2">Toivonen 2002</a>)
|
||||
- (<a href="#citeproc_bib_item_3">Zhang 2011</a>)
|
||||
|
||||
|
||||
## Definition {#definition}
|
||||
|
||||
<div class="definition">
|
||||
<div></div>
|
||||
|
||||
A norm of \\(e\\) (which may be a vector, matrix, signal of system) is a real number, denoted \\(\\|e\\|\\), that satisfies the following properties:
|
||||
|
||||
@@ -46,7 +45,6 @@ A norm of \\(e\\) (which may be a vector, matrix, signal of system) is a real nu
|
||||
## Matrix Norms {#matrix-norms}
|
||||
|
||||
<div class="definition">
|
||||
<div></div>
|
||||
|
||||
A norm on a matrix \\(\\|A\\|\\) is a matrix norm if, in addition to the four norm properties, it also satisfies the multiplicative property:
|
||||
\\[ \\|AB\\| \le \\|A\\| \cdot \\|B\\| \\]
|
||||
@@ -137,10 +135,9 @@ We now consider which system norms result from the definition of input classes a
|
||||
## System Norms {#system-norms}
|
||||
|
||||
|
||||
### \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
|
||||
### \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty-norm}
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Consider a proper linear stable system \\(G(s)\\).
|
||||
The \\(\mathcal{H}\_\infty\\) norm is the peak value of its maximum singular value:
|
||||
@@ -155,16 +152,15 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
|
||||
\\[ \\|G(s)\\|\_\infty = \max\_{d(t)} \frac{\\|e(t)\\|\_2 \neq 0}{\\|d(t)\\|\_2} = \max\_{\\|d(t)\\|\_2 = 1} \\|e(t)\\|\_2 \\]
|
||||
|
||||
|
||||
### \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm}
|
||||
### \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2-norm}
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Consider a strictly proper system \\(G(s)\\).
|
||||
The \\(\mathcal{H}\_2\\) norm is:
|
||||
|
||||
\begin{align\*}
|
||||
\\|G(s)\\|\_2 &\triangleq \sqrt{\frac{1}{2\pi} \int\_{-\infty}^{\infty} \text{tr}\left(G(j\omega)^HG(j\omega)\right) d\omega} \\\\\\
|
||||
\\|G(s)\\|\_2 &\triangleq \sqrt{\frac{1}{2\pi} \int\_{-\infty}^{\infty} \text{tr}\left(G(j\omega)^HG(j\omega)\right) d\omega} \\\\
|
||||
&= \sqrt{\frac{1}{2\pi} \int\_{-\infty}^{\infty} \sum\_i {\sigma\_i}^2(G(j\omega)) d\omega}
|
||||
\end{align\*}
|
||||
|
||||
@@ -174,20 +170,18 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
|
||||
|
||||
- it is a measure of the expected RMS value of the output to white noise excitation
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting.md" >}}).
|
||||
|
||||
As explained in ([Monkhorst 2004](#org16354b5)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in (<a href="#citeproc_bib_item_1">Monkhorst 2004</a>), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org16354b5"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="orga6846b3"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="org300cd1c"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
<a id="org037ea69"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Zhang, Weidong. 2011. <i>Quantitative Process Control Theory</i>. CRC Press.</div>
|
||||
<div class="csl-entry">NO_ITEM_DATA:skogestad05_multiv_feedb_contr</div>
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Operational Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -11,3 +11,9 @@ Tags
|
||||
## Defaults of Operational Amplifiers {#defaults-of-operational-amplifiers}
|
||||
|
||||
{{< youtube nF104EvI0HM >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -33,7 +33,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in <fleming10_nanop_system_with_force_feedb> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb.md" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in (<a href="#citeproc_bib_item_2">Fleming 2010</a>) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb.md" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@@ -57,12 +57,12 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in <claeyssen07_amplif_piezoel_actuat>:
|
||||
The Amplified Piezo Actuators principle is presented in (<a href="#citeproc_bib_item_1">Claeyssen et al. 2007</a>):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in <lucinskis16_dynam_charac>.
|
||||
A model of an amplified piezoelectric actuator is described in (<a href="#citeproc_bib_item_3">Lucinskis and Mangeot 2016</a>).
|
||||
|
||||
<a id="figure--fig:ling16-topology-piezo-mechanism-types"></a>
|
||||
|
||||
@@ -201,3 +201,12 @@ When an external load is applied, the stiffness of the load (\\(k\_e\\)) determi
|
||||
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}).
|
||||
Limitations of the electronics is discussed in [Design, modeling and control of nanopositioning systems]({{< relref "fleming14_desig_model_contr_nanop_system.md" >}}).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” <i>Ferroelectrics</i> 351 (1): 3–14. doi:<a href="https://doi.org/10.1080/00150190701351865">10.1080/00150190701351865</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”</div>
|
||||
</div>
|
||||
|
@@ -1,32 +1,34 @@
|
||||
+++
|
||||
title = "Position Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{<relref "inertial_sensors.md#" >}}), [Force Sensors]({{<relref "force_sensors.md#" >}}), [Sensor Fusion]({{<relref "sensor_fusion.md#" >}}), [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}), [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}})
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors.md" >}}), [Force Sensors]({{< relref "force_sensors.md" >}}), [Sensor Fusion]({{< relref "sensor_fusion.md" >}}), [Signal Conditioner]({{< relref "signal_conditioner.md" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})
|
||||
|
||||
|
||||
## Types of Positioning sensors {#types-of-positioning-sensors}
|
||||
|
||||
High precision positioning sensors include:
|
||||
|
||||
- [Interferometers]({{<relref "interferometers.md#" >}})
|
||||
- [Capacitive Sensors]({{<relref "capacitive_sensors.md#" >}})
|
||||
- [LVDT]({{<relref "linear_variable_differential_transformers.md#" >}})
|
||||
- [Eddy Current Sensors]({{<relref "eddy_current_sensors.md#" >}})
|
||||
- [Encoders]({{<relref "encoders.md#" >}})
|
||||
- [Interferometers]({{< relref "interferometers.md" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors.md" >}})
|
||||
- [LVDT]({{< relref "linear_variable_differential_transformers.md" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors.md" >}})
|
||||
- [Encoders]({{< relref "encoders.md" >}})
|
||||
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org654bd0b)) ([Notes]({{<relref "fleming13_review_nanom_resol_posit_sensor.md#" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (<a href="#citeproc_bib_item_2">Fleming 2013</a>) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor.md" >}}))
|
||||
|
||||
Table [1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>).
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a></span>:
|
||||
Characteristics of relative measurement sensors <a class='org-ref-reference' href="#collette11_review">collette11_review</a>
|
||||
Characteristics of relative measurement sensors
|
||||
</div>
|
||||
|
||||
| Technology | Frequency | Resolution | Range | T Range |
|
||||
@@ -38,31 +40,38 @@ High precision positioning sensors include:
|
||||
| Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C |
|
||||
| Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
|
||||
|
||||
Table [2](#table--tab:summary-position-sensors) it taken from (<a href="#citeproc_bib_item_2">Fleming 2013</a>).
|
||||
|
||||
<a id="table--tab:summary-position-sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\)
|
||||
</div>
|
||||
|
||||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||||
|----------------|--------------------------------|---------|------------|----------|-----------|
|
||||
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
|
||||
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
|
||||
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
|
||||
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
|
||||
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
|
||||
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
|
||||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||||
|----------------|--------------------------------|---------|------------|-------------|-----------|
|
||||
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
|
||||
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
|
||||
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
|
||||
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
|
||||
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
|
||||
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
|
||||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
|
||||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||||
|
||||
<a id="orgff7dc3a"></a>
|
||||
Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_3">Thurner et al. 2015</a>).
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="Figure 1: Overview of range and precision of different position displacement sensors. Taken from <sup id=\"53230532ada812541a7cd984b3aa2662\"><a href=\"#thurner15_fiber_based_distan_sensin_inter\" title=\"Thurner, Quacquarelli, Braun, Pierre-Fran\ccois, Dal Savio, Karrai \& Khaled, Fiber-Based Distance Sensing Interferometry, {Applied optics}, v(10), 3051--3063 (2015).\">thurner15_fiber_based_distan_sensin_inter</a></sup>" >}}
|
||||
<a id="figure--fig:position-sensors-thurner15"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="<span class=\"figure-number\">Figure 1: </span>Overview of range and precision of different position displacement sensors" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org654bd0b"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190 (nil): 106–26. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 3051–63.</div>
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Positioning Stations"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -16,3 +16,9 @@ Tags
|
||||
| [PI](https://www.physikinstrumente.com/en/) | USA |
|
||||
| [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany |
|
||||
| [Newport](https://www.newport.com/c/manual-positioning) | |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -5,11 +5,11 @@ draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}})
|
||||
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})
|
||||
|
||||
Tutorial about Power Spectral Density is accessible [here](https://research.tdehaeze.xyz/spectral-analysis/).
|
||||
|
||||
A good article about how to use the `pwelch` function with Matlab <schmid12_how_to_use_fft_matlab>.
|
||||
A good article about how to use the `pwelch` function with Matlab (<a href="#citeproc_bib_item_1">Schmid 2012</a>).
|
||||
|
||||
|
||||
## Parseval's Theorem - Linking the Frequency and Time domain {#parseval-s-theorem-linking-the-frequency-and-time-domain}
|
||||
@@ -109,11 +109,11 @@ Sxx_t = Pxx/d_f;
|
||||
Sxx_o = 2*Sxx_t(1:L/2+1);
|
||||
```
|
||||
|
||||
The result is shown in Figure [1](#org41c99c6).
|
||||
The result is shown in Figure [1](#figure--fig:psd-manual-example).
|
||||
|
||||
<a id="org41c99c6"></a>
|
||||
<a id="figure--fig:psd-manual-example"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/psd_manual_example.png" caption="Figure 1: Amplitude Spectral Density with manual computation" >}}
|
||||
{{< figure src="/ox-hugo/psd_manual_example.png" caption="<span class=\"figure-number\">Figure 1: </span>Amplitude Spectral Density with manual computation" >}}
|
||||
|
||||
This can also be done using the `pwelch` function which integrated a "window" that permits to do some averaging.
|
||||
|
||||
@@ -122,8 +122,15 @@ This can also be done using the `pwelch` function which integrated a "window" th
|
||||
[pxx, f] = pwelch(x, hanning(ceil(5/T_s)), [], [], 1/T_s);
|
||||
```
|
||||
|
||||
The comparison of the two method is shown in Figure [2](#orge7a31a8).
|
||||
The comparison of the two method is shown in Figure [2](#figure--fig:psd-comp-pwelch-manual-example).
|
||||
|
||||
<a id="orge7a31a8"></a>
|
||||
<a id="figure--fig:psd-comp-pwelch-manual-example"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/psd_comp_pwelch_manual_example.png" caption="Figure 2: Amplitude Spectral Density with manual computation" >}}
|
||||
{{< figure src="/ox-hugo/psd_comp_pwelch_manual_example.png" caption="<span class=\"figure-number\">Figure 2: </span>Amplitude Spectral Density with manual computation" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Schmid, Hanspeter. 2012. “How to Use the Fft and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” <i>Institute of Microelectronics</i>.</div>
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Precision Engineering"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Reference Books"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -10,37 +10,29 @@ Tags
|
||||
|
||||
## Here are my favorite books {#here-are-my-favorite-books}
|
||||
|
||||
([Steinbuch and Oomen 2016](#orgb1557ba))
|
||||
([Taghirad 2013](#org82a60a2))
|
||||
([Lurie 2012](#org1239999))
|
||||
([Skogestad and Postlethwaite 2005](#org73832af))
|
||||
([Schmidt, Schitter, and Rankers 2014](#orgc7f4ff4))
|
||||
([Preumont 2018](#orgf92c7c5))
|
||||
([Leach 2014](#org830c619))
|
||||
([Ewins 2000](#orga0a3ec2))
|
||||
([Leach and Smith 2018](#orgc115008))
|
||||
([Horowitz 2015](#org7915565))
|
||||
|
||||
(<a href="#citeproc_bib_item_8">Steinbuch and Oomen 2016</a>)
|
||||
(<a href="#citeproc_bib_item_9">Taghirad 2013</a>)
|
||||
(<a href="#citeproc_bib_item_5">Lurie 2012</a>)
|
||||
(NO_ITEM_DATA:skogestad05_multiv_feedb_contr)
|
||||
(<a href="#citeproc_bib_item_7">Schmidt, Schitter, and Rankers 2014</a>)
|
||||
(<a href="#citeproc_bib_item_6">Preumont 2018</a>)
|
||||
(<a href="#citeproc_bib_item_3">Leach 2014</a>)
|
||||
(<a href="#citeproc_bib_item_1">Ewins 2000</a>)
|
||||
(<a href="#citeproc_bib_item_4">Leach and Smith 2018</a>)
|
||||
(<a href="#citeproc_bib_item_2">Horowitz 2015</a>)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga0a3ec2"></a>Ewins, DJ. 2000. _Modal Testing: Theory, Practice and Application_. _Research Studies Pre, 2nd Ed., ISBN-13_. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.
|
||||
|
||||
<a id="org7915565"></a>Horowitz, Paul. 2015. _The Art of Electronics - Third Edition_. New York, NY, USA: Cambridge University Press.
|
||||
|
||||
<a id="org830c619"></a>Leach, Richard. 2014. _Fundamental Principles of Engineering Nanometrology_. Elsevier. <https://doi.org/10.1016/c2012-0-06010-3>.
|
||||
|
||||
<a id="orgc115008"></a>Leach, Richard, and Stuart T. Smith. 2018. _Basics of Precision Engineering - 1st Edition_. CRC Press.
|
||||
|
||||
<a id="org1239999"></a>Lurie, B. J. 2012. _Classical Feedback Control : with MATLAB and Simulink_. Boca Raton, FL: CRC Press.
|
||||
|
||||
<a id="orgf92c7c5"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="orgc7f4ff4"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
||||
<a id="org73832af"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2005. _Multivariable Feedback Control: Analysis and Design - Second Edition_. John Wiley.
|
||||
|
||||
<a id="orgb1557ba"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.
|
||||
|
||||
<a id="org82a60a2"></a>Taghirad, Hamid. 2013. _Parallel Robots : Mechanics and Control_. Boca Raton, FL: CRC Press.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ewins, DJ. 2000. <i>Modal Testing: Theory, Practice and Application</i>. <i>Research Studies Pre, 2nd Ed., Isbn-13</i>. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Horowitz, Paul. 2015. <i>The Art of Electronics - Third Edition</i>. New York, NY, USA: Cambridge University Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Leach, Richard. 2014. <i>Fundamental Principles of Engineering Nanometrology</i>. Elsevier. doi:<a href="https://doi.org/10.1016/c2012-0-06010-3">10.1016/c2012-0-06010-3</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Leach, Richard, and Stuart T. Smith. 2018. <i>Basics of Precision Engineering - 1st Edition</i>. CRC Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lurie, B. J. 2012. <i>Classical Feedback Control : with Matlab and Simulink</i>. Boca Raton, FL: CRC Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. <i>The Design of High Performance Mechatronics - 2nd Revised Edition</i>. Ios Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_8"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_9"></a>Taghirad, Hamid. 2013. <i>Parallel Robots : Mechanics and Control</i>. Boca Raton, FL: CRC Press.</div>
|
||||
<div class="csl-entry">NO_ITEM_DATA:skogestad05_multiv_feedb_contr</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Rotation Stage"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Slip Rings]({{<relref "slip_rings.md#" >}})
|
||||
: [Slip Rings]({{< relref "slip_rings.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -15,3 +15,9 @@ Tags
|
||||
|--------------------------------------------------------|---------|
|
||||
| [Huber](https://www.xhuber.com/en/) | Germany |
|
||||
| [LAB Motion System](http://www.leuvenairbearings.com/) | Belgium |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Sensor Fusion"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuator Fusion]({{< relref "actuator_fusion" >}}), [Complementary Filters]({{< relref "complementary_filters" >}}), [Sensors]({{< relref "sensors" >}})
|
||||
: [Actuator Fusion]({{< relref "actuator_fusion.md" >}}), [Complementary Filters]({{< relref "complementary_filters.md" >}}), [Sensors]({{< relref "sensors.md" >}})
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Sensor Noise Estimation"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -12,18 +12,17 @@ Tags
|
||||
|
||||
Measuring the noise level of inertial sensors is not easy as the seismic motion is usually much larger than the sensor's noise level.
|
||||
|
||||
A technique to estimate the sensor noise in such case is proposed in ([Barzilai, VanZandt, and Kenny 1998](#org65ed433)) and well explained in ([Poel 2010](#org02bd600)) (Section 6.1.3).
|
||||
A technique to estimate the sensor noise in such case is proposed in (<a href="#citeproc_bib_item_1">Barzilai, VanZandt, and Kenny 1998</a>) and well explained in (<a href="#citeproc_bib_item_2">Van der Poel 2010</a>) (Section 6.1.3).
|
||||
|
||||
The idea is to mount two inertial sensors closely together such that they should measure the same quantity.
|
||||
|
||||
This is represented in Figure [1](#orgbc58a8d) where two identical sensors are measuring the same motion \\(x(t)\\).
|
||||
This is represented in Figure [1](#figure--fig:huddle-test-setup) where two identical sensors are measuring the same motion \\(x(t)\\).
|
||||
|
||||
<a id="orgbc58a8d"></a>
|
||||
<a id="figure--fig:huddle-test-setup"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/huddle_test_setup.png" caption="Figure 1: Schematic representation of the setup for measuring the noise of inertial sensors." >}}
|
||||
{{< figure src="/ox-hugo/huddle_test_setup.png" caption="<span class=\"figure-number\">Figure 1: </span>Schematic representation of the setup for measuring the noise of inertial sensors." >}}
|
||||
|
||||
<div class="definition">
|
||||
<div></div>
|
||||
|
||||
Few quantities that will be used to estimate the sensor noise are now defined.
|
||||
This include the **Coherence**, the **Power Spectral Density** (PSD) and the **Cross Spectral Density** (CSD).
|
||||
@@ -35,7 +34,7 @@ where \\(|P\_{x}(\omega)|\\) is the output PSD of signal \\(x(t)\\) and \\(|C\_{
|
||||
The PSD and CSD are defined as follow:
|
||||
|
||||
\begin{align}
|
||||
|P\_x(\omega)| &= \frac{2}{n\_d T} \sum^{n\_d}\_{n=1} \left| x\_k(\omega, T) \right|^2 \\\\\\
|
||||
|P\_x(\omega)| &= \frac{2}{n\_d T} \sum^{n\_d}\_{n=1} \left| x\_k(\omega, T) \right|^2 \\\\
|
||||
|C\_{xy}(\omega)| &= \frac{2}{n\_d T} \sum^{n\_d}\_{n=1} [ x\_k^\*(\omega, T) ] [ y\_k(\omega, T) ]
|
||||
\end{align}
|
||||
|
||||
@@ -76,11 +75,11 @@ Now suppose that:
|
||||
- sensor noises are modelled as input noises \\(n\_1(t)\\) and \\(n\_2(s)\\)
|
||||
- sensor noises are uncorrelated and each are uncorrelated with \\(x(t)\\)
|
||||
|
||||
Then, the system can be represented by the block diagram in Figure [2](#org1dabfe7), and we can write:
|
||||
Then, the system can be represented by the block diagram in Figure [2](#figure--fig:huddle-test-block-diagram), and we can write:
|
||||
|
||||
\begin{align}
|
||||
P\_{y\_1y\_1}(\omega) &= |H\_1(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_1}(\omega) ) \\\\\\
|
||||
P\_{y\_2y\_2}(\omega) &= |H\_2(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_2}(\omega) ) \\\\\\
|
||||
P\_{y\_1y\_1}(\omega) &= |H\_1(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_1}(\omega) ) \\\\
|
||||
P\_{y\_2y\_2}(\omega) &= |H\_2(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_2}(\omega) ) \\\\
|
||||
C\_{y\_1y\_2}(j\omega) &= H\_2^H(j\omega) H\_1(j\omega) P\_{x}(\omega)
|
||||
\end{align}
|
||||
|
||||
@@ -90,21 +89,20 @@ And the CSD between \\(y\_1(t)\\) and \\(y\_2(t)\\) is:
|
||||
\gamma^2\_{y\_1y\_2}(\omega) = \frac{|C\_{y\_1y\_2}(j\omega)|^2}{P\_{y\_1}(\omega) P\_{y\_2}(\omega)}
|
||||
\end{equation}
|
||||
|
||||
<a id="org1dabfe7"></a>
|
||||
<a id="figure--fig:huddle-test-block-diagram"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/huddle_test_block_diagram.png" caption="Figure 2: Huddle test block diagram" >}}
|
||||
{{< figure src="/ox-hugo/huddle_test_block_diagram.png" caption="<span class=\"figure-number\">Figure 2: </span>Huddle test block diagram" >}}
|
||||
|
||||
Rearranging the equations, we obtain the PSD of \\(n\_1(t)\\) and \\(n\_2(t)\\):
|
||||
|
||||
\begin{align}
|
||||
P\_{n1}(\omega) = \frac{P\_{y\_1}(\omega)}{|H\_1(j\omega)|^2} \left( 1 - \gamma\_{y\_1y\_2}(\omega) \frac{|H\_1(j\omega)|}{|H\_2(j\omega)|} \sqrt{\frac{P\_{y\_2}(\omega)}{P\_{y\_1}(\omega)}} \right) \\\\\\
|
||||
P\_{n1}(\omega) = \frac{P\_{y\_1}(\omega)}{|H\_1(j\omega)|^2} \left( 1 - \gamma\_{y\_1y\_2}(\omega) \frac{|H\_1(j\omega)|}{|H\_2(j\omega)|} \sqrt{\frac{P\_{y\_2}(\omega)}{P\_{y\_1}(\omega)}} \right) \\\\
|
||||
P\_{n2}(\omega) = \frac{P\_{y\_2}(\omega)}{|H\_2(j\omega)|^2} \left( 1 - \gamma\_{y\_1y\_2}(\omega) \frac{|H\_2(j\omega)|}{|H\_1(j\omega)|} \sqrt{\frac{P\_{y\_1}(\omega)}{P\_{y\_2}(\omega)}} \right)
|
||||
\end{align}
|
||||
|
||||
If we assume the two sensor dynamics to be the same \\(H\_1(s) \approx H\_2(s)\\) and the PSD of \\(n\_1(t)\\) and \\(n\_2(t)\\) to be the same (\\(P\_{n\_1}(\omega) \approx P\_{n\_2}(\omega)\\)) which is most of the time the case when using two identical sensors, we obtain this approximate equation:
|
||||
|
||||
<div class="important">
|
||||
<div></div>
|
||||
|
||||
\begin{equation}
|
||||
|P\_{n\_1}(\omega)| \approx \frac{P\_{y\_1}}{|H\_1(j\omega)|^2} \big( 1 - \gamma\_{y\_1y\_2}(\omega) \big)
|
||||
@@ -113,9 +111,9 @@ If we assume the two sensor dynamics to be the same \\(H\_1(s) \approx H\_2(s)\\
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org65ed433"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” _Review of Scientific Instruments_ 69 (7):2767–72. <https://doi.org/10.1063/1.1149013>.
|
||||
|
||||
<a id="org02bd600"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. <https://doi.org/10.3990/1.9789036530163>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” <i>Review of Scientific Instruments</i> 69 (7): 2767–72. doi:<a href="https://doi.org/10.1063/1.1149013">10.1063/1.1149013</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. doi:<a href="https://doi.org/10.3990/1.9789036530163">10.3990/1.9789036530163</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -9,6 +9,12 @@ Tags
|
||||
|
||||
Notes about sensors:
|
||||
|
||||
- [Force Sensors]({{< relref "force_sensors" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Force Sensors]({{< relref "force_sensors.md" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors.md" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors.md" >}})
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Shaker"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Voice Coil Actuators]({{<relref "voice_coil_actuators.md#" >}})
|
||||
: [Voice Coil Actuators]({{< relref "voice_coil_actuators.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -20,3 +20,9 @@ Tags
|
||||
| [YMC](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
|
||||
| [Vibration Research](https://vibrationresearch.com/shakers/) | USA |
|
||||
| [Sentek Dynamics](https://www.sentekdynamics.com/) | USA |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Signal Conditioner"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Sensors]({{<relref "sensors.md#" >}}), [Electronics]({{<relref "electronics.md#" >}})
|
||||
: [Sensors]({{< relref "sensors.md" >}}), [Electronics]({{< relref "electronics.md" >}})
|
||||
|
||||
Most sensors needs some signal conditioner electronics before digitize the signal.
|
||||
Few examples are:
|
||||
@@ -26,6 +26,12 @@ The signal conditioning electronics can have different functions:
|
||||
|
||||
Depending on the electrical quantity that is meaningful for the measurement, different types of amplifiers are used:
|
||||
|
||||
- Current to Voltage ([Transimpedance Amplifiers]({{<relref "transimpedance_amplifiers.md#" >}}))
|
||||
- Charge to Voltage ([Charge Amplifiers]({{<relref "charge_amplifiers.md#" >}}))
|
||||
- Voltage to Voltage ([Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}))
|
||||
- Current to Voltage ([Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers.md" >}}))
|
||||
- Charge to Voltage ([Charge Amplifiers]({{< relref "charge_amplifiers.md" >}}))
|
||||
- Voltage to Voltage ([Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,16 +1,16 @@
|
||||
+++
|
||||
title = "Signal to Noise Ratio"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}}), [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}})
|
||||
: [Electronics]({{< relref "electronics.md" >}}), [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting.md" >}})
|
||||
|
||||
|
||||
## SNR to Noise PSD {#snr-to-noise-psd}
|
||||
|
||||
From ([Jabben 2007](#org55bd4a6)) (Section 3.3.2):
|
||||
From (<a href="#citeproc_bib_item_2">Jabben 2007</a>) (Section 3.3.2):
|
||||
|
||||
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
|
||||
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
|
||||
@@ -23,7 +23,6 @@ From ([Jabben 2007](#org55bd4a6)) (Section 3.3.2):
|
||||
> with \\(x\_{fr}\\) the full range of \\(x\\), and \\(C\_{snr}\\) the SNR.
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Let's take an example.
|
||||
|
||||
@@ -50,7 +49,6 @@ If the full range is \\(\Delta V\\), then:
|
||||
\\[ S\_\text{rms} = \frac{\Delta V/2}{\sqrt{2}} \\]
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
As an example, let's take a voltage amplifier with a full range of \\(\Delta V = 20V\\) and a SNR of 85dB.
|
||||
The RMS value of the noise is then:
|
||||
@@ -67,7 +65,6 @@ If the wanted full range and RMS value of the noise are defined, the required SN
|
||||
\\[ S\_{snr} = 20 \log \frac{\text{Signal, rms}}{\text{Noise, rms}} \\]
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V\\), the corresponding SNR is:
|
||||
|
||||
@@ -78,14 +75,13 @@ Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V
|
||||
|
||||
## Noise Density to RMS noise {#noise-density-to-rms-noise}
|
||||
|
||||
From ([Fleming 2010](#org65ccddc)):
|
||||
From (<a href="#citeproc_bib_item_1">Fleming 2010</a>):
|
||||
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
|
||||
|
||||
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
|
||||
The peak to peak amplitude is then approximately \\(6 \sigma\\).
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
- noise density = \\(20 pm/\sqrt{Hz}\\)
|
||||
- bandwidth = 100Hz
|
||||
@@ -96,9 +92,9 @@ The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org65ccddc"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org55bd4a6"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 433–47. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.</div>
|
||||
</div>
|
||||
|
@@ -1,11 +1,11 @@
|
||||
+++
|
||||
title = "Simulink"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Matlab]({{< relref "matlab" >}})
|
||||
: [Matlab]({{< relref "matlab.md" >}})
|
||||
|
||||
|
||||
## Useful Key Bindings {#useful-key-bindings}
|
||||
@@ -36,3 +36,9 @@ Tips:
|
||||
## Linearize portion of Simulink file {#linearize-portion-of-simulink-file}
|
||||
|
||||
<https://in.mathworks.com/help/slcontrol/ug/specify-model-portion-to-linearize.html>
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Simulink Real Time Target Machines"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
@@ -35,3 +35,9 @@ Comparison
|
||||
| Encoder (quadrature) | 2 | 4 | 4 | 2 |
|
||||
| Sampling Frequency | ? | ? | 1kHz (USB), 15kHz (Serial) | 2kHz |
|
||||
| Price | waiting for quote | 1000 | 900 | 1300 |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Singular Value Decomposition"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## SVD of a MIMO system {#svd-of-a-mimo-system}
|
||||
|
||||
This is taken from ([Skogestad and Postlethwaite 2007](#org8e4f47e)).
|
||||
This is taken from (NO_ITEM_DATA:skogestad05_multiv_feedb_contr).
|
||||
|
||||
We are interested by the physical interpretation of the SVD when applied to the frequency response of a MIMO system \\(G(s)\\) with \\(m\\) inputs and \\(l\\) outputs.
|
||||
|
||||
@@ -43,7 +43,7 @@ Then is follows that:
|
||||
|
||||
## SVD to pseudo inverse rectangular matrices {#svd-to-pseudo-inverse-rectangular-matrices}
|
||||
|
||||
This is taken from ([Preumont 2018](#org6d4589f)).
|
||||
This is taken from (<a href="#citeproc_bib_item_1">Preumont 2018</a>).
|
||||
|
||||
The **Singular Value Decomposition** (SVD) is a generalization of the eigenvalue decomposition of a rectangular matrix:
|
||||
\\[ J = U \Sigma V^T = \sum\_{i=1}^r \sigma\_i u\_i v\_i^T \\]
|
||||
@@ -63,9 +63,9 @@ When \\(c(J)\\) becomes large, the most straightforward way to handle the ill-co
|
||||
This will have usually little impact of the fitting error while reducing considerably the actuator inputs \\(v\\).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6d4589f"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org8e4f47e"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
|
||||
<div class="csl-entry">NO_ITEM_DATA:skogestad05_multiv_feedb_contr</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Slip Rings"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Rotation Stage]({{<relref "rotation_stage.md#" >}})
|
||||
: [Rotation Stage]({{< relref "rotation_stage.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -14,3 +14,9 @@ Tags
|
||||
| Manufacturers | Country |
|
||||
|-----------------------------------|---------|
|
||||
| [Moflon](https://www.moflon.com/) | China |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Stewart Platforms"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -36,16 +36,16 @@ Tags
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#org4f530c8))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgc2500da))
|
||||
- ([McInroy 1999](#orgf6f13f1))
|
||||
- ([McInroy and Hamann 2000](#org353671a))
|
||||
- ([Chen and McInroy 2000](#orgf235207))
|
||||
- ([McInroy 2002](#org5be7775))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgdc37806))
|
||||
- ([Lin and McInroy 2003](#orge3fb031))
|
||||
- ([Jafari and McInroy 2003](#orge70feb2))
|
||||
- ([Chen and McInroy 2004](#org8ae8169))
|
||||
- (<a href="#citeproc_bib_item_10">O’Brien et al. 1998</a>)
|
||||
- (<a href="#citeproc_bib_item_9">McInroy, O’Brien, and Neat 1999</a>)
|
||||
- (<a href="#citeproc_bib_item_6">McInroy 1999</a>)
|
||||
- (<a href="#citeproc_bib_item_8">McInroy and Hamann 2000</a>)
|
||||
- (<a href="#citeproc_bib_item_2">Chen and McInroy 2000</a>)
|
||||
- (<a href="#citeproc_bib_item_7">McInroy 2002</a>)
|
||||
- (<a href="#citeproc_bib_item_5">Li, Hamann, and McInroy 2001</a>)
|
||||
- (<a href="#citeproc_bib_item_4">Lin and McInroy 2003</a>)
|
||||
- (<a href="#citeproc_bib_item_3">Jafari and McInroy 2003</a>)
|
||||
- (<a href="#citeproc_bib_item_1">Chen and McInroy 2004</a>)
|
||||
|
||||
Main advantage of flexure jointed Stewart platforms over conventional (long stroke) ones:
|
||||
|
||||
@@ -55,25 +55,17 @@ Main advantage of flexure jointed Stewart platforms over conventional (long stro
|
||||
- Easier to decouple the dynamics that works for all the stroke
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org8ae8169"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="orgf235207"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="orge70feb2"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="orge3fb031"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="orgdc37806"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="orgf6f13f1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="org5be7775"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="org353671a"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="orgc2500da"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="org4f530c8"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” <i>Ieee Transactions on Control Systems Technology</i> 12 (3): 413–21. doi:<a href="https://doi.org/10.1109/tcst.2004.824339">10.1109/tcst.2004.824339</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” <i>Ieee Transactions on Robotics and Automation</i> 19 (4). Institute of Electrical and Electronics Engineers (IEEE): 595–603. doi:<a href="https://doi.org/10.1109/tra.2003.814506">10.1109/tra.2003.814506</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” <i>Ieee Transactions on Control Systems Technology</i> 11 (2): 267–72. doi:<a href="https://doi.org/10.1109/tcst.2003.809248">10.1109/tcst.2003.809248</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In <i>Smart Structures and Materials 2001: Smart Structures and Integrated Systems</i>, nil. doi:<a href="https://doi.org/10.1117/12.436521">10.1117/12.436521</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 Ieee International Conference on Control Applications (Cat. No.99ch36328)</i>, nil. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>Ieee/Asme Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_8"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” <i>Ieee Transactions on Robotics and Automation</i> 16 (4): 372–81. doi:<a href="https://doi.org/10.1109/70.864229">10.1109/70.864229</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_9"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” <i>Ieee/Asme Transactions on Mechatronics</i> 4 (1): 91–95. doi:<a href="https://doi.org/10.1109/3516.752089">10.1109/3516.752089</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_10"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots through Experiments on a 6 Legged Platform.” In <i>Proceedings of the 1998 American Control Conference. Acc (Ieee Cat. No.98ch36207)</i>, nil. doi:<a href="https://doi.org/10.1109/acc.1998.703532">10.1109/acc.1998.703532</a>.</div>
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "System Identification"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
: [Modal Analysis]({{< relref "modal_analysis.md" >}})
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
640
content/zettels/test.md
Normal file
640
content/zettels/test.md
Normal file
@@ -0,0 +1,640 @@
|
||||
+++
|
||||
title = "test Page"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Basics {#basics}
|
||||
|
||||
|
||||
### Normal Markup {#normal-markup}
|
||||
|
||||
You can make words **bold**, _italic_, <span class="underline">underlined</span>, `verbatim` and `code`, and, if you must, ~~strike-through~~.
|
||||
|
||||
Here is some inline code Matlab code: `[K,CL,gamma] = mixsyn(G,W1,[],W3);`.
|
||||
|
||||
|
||||
### Links to Footnotes {#links-to-footnotes}
|
||||
|
||||
A link to a footnote[^fn:1] and to another footnote[^fn:2].
|
||||
|
||||
|
||||
### Lists {#lists}
|
||||
|
||||
**Unordered List**:
|
||||
|
||||
- Lorem ipsum dolor sit amet, consectetur adipiscing elit.
|
||||
- Nam aliquet euismod viverra.
|
||||
- Phasellus turpis nisi, faucibus a orci et, faucibus fermentum ligula.
|
||||
|
||||
**List with Tasks**:
|
||||
|
||||
- [ ] Task 1
|
||||
- [X] Task 2
|
||||
- [-] Sub-tasks:
|
||||
- [ ] Sub-task 1
|
||||
- [X] Sub-task 2
|
||||
|
||||
**Ordered List**:
|
||||
|
||||
1. In libero odio, imperdiet eget ex a, vulputate suscipit tellus.
|
||||
2. Etiam sed leo ex.
|
||||
3. Integer eu rutrum turpis.
|
||||
|
||||
**Nested Lists**:
|
||||
|
||||
- Nulla facilisi.
|
||||
- Donec vulputate risus ut lectus bibendum, vitae fringilla odio tempus.
|
||||
1. In libero odio, imperdiet eget ex a, vulputate suscipit tellus.
|
||||
2. Etiam sed leo ex.
|
||||
- Nulla facilisi.
|
||||
- Donec vulputate risus ut lectus bibendum, vitae fringilla odio tempus.
|
||||
3. Integer eu rutrum turpis.
|
||||
- Ut porta, quam id mattis feugiat, augue mauris bibendum sapien, a pulvinar mi lorem vitae nunc.
|
||||
- Integer eu rutrum turpis.
|
||||
- Sed pretium mattis nibh, vel lobortis augue semper vel.
|
||||
|
||||
**Definition List**:
|
||||
|
||||
Lorem ipsum
|
||||
: dolor sit amet, consectetur adipiscing elit. Mauris laoreet
|
||||
sollicitudin venenatis. Duis sed consequat dolor.
|
||||
|
||||
Etiam feugiat
|
||||
: pharetra sapien et semper. Nunc ornare lacus sit amet massa
|
||||
auctor, vitae aliquam eros interdum. Mauris arcu ante, imperdiet vel purus
|
||||
ac, bibendum faucibus diam. Ut blandit nec mi at ultricies. Donec eget
|
||||
mattis nisl. In sed nibh felis. Cras quis convallis orci.
|
||||
|
||||
Sed aliquam
|
||||
: odio sed faucibus aliquam, arcu augue elementum justo, ut
|
||||
vulputate ligula sem in augue. Maecenas ante felis, pellentesque auctor
|
||||
semper non, eleifend quis ante. Fusce enim orci, suscipit ac dapibus et,
|
||||
fermentum eu tortor. Duis in facilisis ante, quis faucibus dolor. Etiam
|
||||
maximus lorem quis accumsan vehicula.
|
||||
|
||||
|
||||
### Links {#links}
|
||||
|
||||
Here is a list of links to:
|
||||
|
||||
- Figure [3](#figure--fig:general-control-names)
|
||||
- Table [3](#table--tab:table-with-equations)
|
||||
- Listing [1](#code-snippet--lst:matlab-figure)
|
||||
- Specific [line of code](#org-coderef--967846-4)
|
||||
- Equation <eq:numbered>
|
||||
- Section
|
||||
- Bibliographic Reference (<a href="#citeproc_bib_item_3">Stanisic and Legrand 2014</a>), and (<a href="#citeproc_bib_item_2">Schulte and Davison 2011</a>; <a href="#citeproc_bib_item_1">Dominik 2010</a>; <a href="#citeproc_bib_item_3">Stanisic and Legrand 2014</a>)
|
||||
|
||||
|
||||
### Maths {#maths}
|
||||
|
||||
Here is some inline mathematics: \\(z = 2\\).
|
||||
|
||||
Unumbered equation:
|
||||
\\[ F(x) = \int\_0^x f(t) dt \\]
|
||||
|
||||
Using the `equation` environment in Eq. <eq:numbered>.
|
||||
|
||||
\begin{equation}
|
||||
F(s) = \int\_0^\infty f(t) e^{-st} dt \label{eq:numbered}
|
||||
\end{equation}
|
||||
|
||||
Using the `align` environment Equations <eq:align_1> and <eq:align_2>.
|
||||
|
||||
\begin{align}
|
||||
\mathcal{F}(a) &= \frac{1}{2\pi i}\oint\_\gamma \frac{f(z)}{z - a}\\,dz \label{eq:align\_1} \\\\
|
||||
\int\_D (\nabla\cdot \mathcal{F})\\,dV &=\int\_{\partial D}\mathcal{F}\cdot n\\, dS \label{eq:align\_2}
|
||||
\end{align}
|
||||
|
||||
|
||||
### Verse, Quote {#verse-quote}
|
||||
|
||||
Below is a verse.
|
||||
|
||||
<p class="verse">
|
||||
|
||||
Great clouds overhead<br />
|
||||
Tiny black birds rise and fall<br />
|
||||
Snow covers Emacs<br />
|
||||
<br />
|
||||
---AlexSchroeder<br />
|
||||
|
||||
</p>
|
||||
|
||||
Below is a quote.
|
||||
|
||||
> Nobody ever figures out what life is all about, and it doesn't matter.
|
||||
> Explore the world.
|
||||
> Nearly everything is really interesting if you go into it deeply enough.
|
||||
>
|
||||
> ---Richard P. Feynman
|
||||
|
||||
|
||||
### Aside {#aside}
|
||||
|
||||
An aside block can be used as shown below.
|
||||
|
||||
<aside>
|
||||
|
||||
This is a note about the text using the `aside` environment.
|
||||
This can be as long as wanted
|
||||
|
||||
</aside>
|
||||
|
||||
Cras elementum ex vel orci congue porttitor. Vestibulum scelerisque gravida mattis. Suspendisse sit amet volutpat felis. Cras luctus porta lectus eget scelerisque. Cras blandit purus vel odio malesuada pellentesque. Interdum et malesuada fames ac ante ipsum primis in faucibus. Morbi eget aliquet sapien. Nunc eu elit in ligula aliquam congue dapibus eu massa. Sed accumsan hendrerit viverra. Quisque purus enim, tristique vitae porttitor eu, feugiat non ligula. Duis vitae ipsum vel quam ultricies ornare quis vitae quam. Vivamus commodo mauris non ex rutrum, sagittis facilisis metus tincidunt. Etiam vel nibh sit amet lorem auctor volutpat vel quis nulla. Quisque nec pharetra justo.
|
||||
|
||||
|
||||
### Inline Task {#inline-task}
|
||||
|
||||
Some text.
|
||||
|
||||
<div class="inlinetask">
|
||||
<b>This is an inline task</b><br />
|
||||
nil</div>
|
||||
|
||||
Some text.
|
||||
|
||||
|
||||
## Headlines {#headlines}
|
||||
|
||||
<span class="org-target" id="org-target--sec:headlines"></span>
|
||||
|
||||
|
||||
### Second level Headline with tags <span class="tag"><span class="_home">@home</span><span class="_work">@work</span></span> {#second-level-headline-with-tags}
|
||||
|
||||
|
||||
#### Third level Headline {#third-level-headline}
|
||||
|
||||
|
||||
##### Fourth level Headline {#fourth-level-headline}
|
||||
|
||||
Aliquam aliquet sagittis lorem in rutrum. Cras pharetra viverra nisi, at placerat felis malesuada elementum. Donec tincidunt pharetra tincidunt. Praesent id lectus eget erat porttitor placerat non a magna. Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean sollicitudin nibh enim, sed pulvinar massa iaculis sit amet. Vivamus egestas laoreet varius. Sed finibus libero nec quam tempor, eget viverra sapien fermentum. Donec dictum eleifend velit, vel elementum ex ultrices non. Vivamus mauris ex, ultrices quis sem vel, dapibus lacinia est. Praesent a sapien id diam venenatis finibus non vel justo. Cras sagittis tortor ac rutrum elementum. Maecenas luctus tempor enim, vitae suscipit quam consequat a. Phasellus feugiat congue sapien commodo cursus. Interdum et malesuada fames ac ante ipsum primis in faucibus.
|
||||
|
||||
|
||||
#### Third level Headline {#third-level-headline}
|
||||
|
||||
|
||||
##### Fourth level Headline {#fourth-level-headline}
|
||||
|
||||
Aliquam aliquet sagittis lorem in rutrum. Cras pharetra viverra nisi, at placerat felis malesuada elementum. Donec tincidunt pharetra tincidunt. Praesent id lectus eget erat porttitor placerat non a magna. Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean sollicitudin nibh enim, sed pulvinar massa iaculis sit amet. Vivamus egestas laoreet varius. Sed finibus libero nec quam tempor, eget viverra sapien fermentum. Donec dictum eleifend velit, vel elementum ex ultrices non. Vivamus mauris ex, ultrices quis sem vel, dapibus lacinia est. Praesent a sapien id diam venenatis finibus non vel justo. Cras sagittis tortor ac rutrum elementum. Maecenas luctus tempor enim, vitae suscipit quam consequat a. Phasellus feugiat congue sapien commodo cursus. Interdum et malesuada fames ac ante ipsum primis in faucibus.
|
||||
|
||||
|
||||
### Second level Headline with Schedule {#second-level-headline-with-schedule}
|
||||
|
||||
Aliquam aliquet sagittis lorem in rutrum. Cras pharetra viverra nisi, at placerat felis malesuada elementum. Donec tincidunt pharetra tincidunt. Praesent id lectus eget erat porttitor placerat non a magna. Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean sollicitudin nibh enim, sed pulvinar massa iaculis sit amet. Vivamus egestas laoreet varius. Sed finibus libero nec quam tempor, eget viverra sapien fermentum. Donec dictum eleifend velit, vel elementum ex ultrices non. Vivamus mauris ex, ultrices quis sem vel, dapibus lacinia est. Praesent a sapien id diam venenatis finibus non vel justo. Cras sagittis tortor ac rutrum elementum. Maecenas luctus tempor enim, vitae suscipit quam consequat a. Phasellus feugiat congue sapien commodo cursus. Interdum et malesuada fames ac ante ipsum primis in faucibus.
|
||||
|
||||
|
||||
### Second level Headline with a priority {#second-level-headline-with-a-priority}
|
||||
|
||||
Aliquam aliquet sagittis lorem in rutrum. Cras pharetra viverra nisi, at placerat felis malesuada elementum. Donec tincidunt pharetra tincidunt. Praesent id lectus eget erat porttitor placerat non a magna.
|
||||
|
||||
|
||||
### Second level Headline with TODO State {#second-level-headline-with-todo-state}
|
||||
|
||||
Vivamus egestas laoreet varius. Sed finibus libero nec quam tempor, eget viverra sapien fermentum. Donec dictum eleifend velit, vel elementum ex ultrices non. Vivamus mauris ex, ultrices quis sem vel, dapibus lacinia est. Praesent a sapien id diam venenatis finibus non vel justo.
|
||||
|
||||
|
||||
### Second level Headline with DONE State {#second-level-headline-with-done-state}
|
||||
|
||||
Cras sagittis tortor ac rutrum elementum. Maecenas luctus tempor enim, vitae suscipit quam consequat a. Phasellus feugiat congue sapien commodo cursus. Interdum et malesuada fames ac ante ipsum primis in faucibus.
|
||||
|
||||
|
||||
#### Third level Headline with DONE State {#third-level-headline-with-done-state}
|
||||
|
||||
Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean sollicitudin nibh enim, sed pulvinar massa iaculis sit amet.
|
||||
|
||||
|
||||
## Blocks {#blocks}
|
||||
|
||||
<div class="seealso">
|
||||
|
||||
`seealso` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="hint">
|
||||
|
||||
`hint` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="definition">
|
||||
|
||||
`definition` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="important">
|
||||
|
||||
`important` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
`exampl` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="exercice">
|
||||
|
||||
`exercice` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="question">
|
||||
|
||||
`question` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="answer">
|
||||
|
||||
`answer` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="sum">
|
||||
|
||||
`summary` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="note">
|
||||
|
||||
`note` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="caution">
|
||||
|
||||
`caution` block.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="warning">
|
||||
|
||||
`warning` block.
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
## Source Blocks {#source-blocks}
|
||||
|
||||
|
||||
### Figures {#figures}
|
||||
|
||||
```matlab
|
||||
t = 0:0.01:5; % Time [s]
|
||||
x = sin(2*pi*t); % Output Voltage [V]
|
||||
```
|
||||
|
||||
```matlab
|
||||
figure;
|
||||
plot(t, x);
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
```
|
||||
|
||||
<a id="figure--fig:matlab-fig-example"></a>
|
||||
|
||||
{{< figure src="figs/matlab_fig_example.png" caption="<span class=\"figure-number\">Figure 1: </span>Matlab Figure" >}}
|
||||
|
||||
|
||||
### Table Result {#table-result}
|
||||
|
||||
```matlab
|
||||
x = 1:10;
|
||||
y = x.^2;
|
||||
```
|
||||
|
||||
<a id="table--tab:table-name"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-name">Table 1</a></span>:
|
||||
Table caption
|
||||
</div>
|
||||
|
||||
| \\(x\\) | \\(y = x^2\\) |
|
||||
|---------|---------------|
|
||||
| 1 | 1 |
|
||||
| 2 | 4 |
|
||||
| 3 | 9 |
|
||||
| 4 | 16 |
|
||||
| 5 | 25 |
|
||||
| 6 | 36 |
|
||||
| 7 | 49 |
|
||||
| 8 | 64 |
|
||||
| 9 | 81 |
|
||||
| 10 | 100 |
|
||||
|
||||
|
||||
### Inline Results {#inline-results}
|
||||
|
||||
Results can be automatically outputed as shown below.
|
||||
|
||||
```matlab
|
||||
sqrt(2)
|
||||
```
|
||||
|
||||
```text
|
||||
1.4142
|
||||
```
|
||||
|
||||
```matlab
|
||||
y
|
||||
```
|
||||
|
||||
```text
|
||||
y =
|
||||
1 4 9 16 25 36 49 64 81 100
|
||||
```
|
||||
|
||||
|
||||
### Caption and Reference {#caption-and-reference}
|
||||
|
||||
Captions can be added to code blocks.
|
||||
Moreover, we can link to specific bode blocks (Listing [1](#code-snippet--lst:matlab-figure) or [2](#code-snippet--lst:matlab-svd)).
|
||||
|
||||
<a id="code-snippet--lst:matlab-figure"></a>
|
||||
```matlab
|
||||
figure;
|
||||
[X,Y,Z] = peaks;
|
||||
contour(X,Y,Z,20)
|
||||
```
|
||||
|
||||
<div class="src-block-caption">
|
||||
<span class="src-block-number"><a href="#code-snippet--lst:matlab-figure">Code Snippet 1</a></span>:
|
||||
Code to produce a nice contour plot
|
||||
</div>
|
||||
|
||||
<a id="figure--fig:matlab-logo"></a>
|
||||
|
||||
{{< figure src="figs/matlab_logo.png" caption="<span class=\"figure-number\">Figure 2: </span>Obtained Contour Plot" >}}
|
||||
|
||||
<a id="code-snippet--lst:matlab-svd"></a>
|
||||
```matlab
|
||||
A = [1 2; 3 4; 5 6; 7 8]
|
||||
[U,S,V] = svd(A)
|
||||
```
|
||||
|
||||
<div class="src-block-caption">
|
||||
<span class="src-block-number"><a href="#code-snippet--lst:matlab-svd">Code Snippet 2</a></span>:
|
||||
Code to compute the Singular Value Decomposition
|
||||
</div>
|
||||
|
||||
```text
|
||||
A = [1 2; 3 4; 5 6; 7 8]
|
||||
A =
|
||||
1 2
|
||||
3 4
|
||||
5 6
|
||||
7 8
|
||||
[U,S,V] = svd(A)
|
||||
U =
|
||||
-0.152483233310201 -0.82264747222566 -0.394501022283829 -0.379959133877596
|
||||
-0.349918371807964 -0.42137528768458 0.242796545704357 0.800655879510063
|
||||
-0.547353510305727 -0.0201031031435029 0.697909975442776 -0.461434357387336
|
||||
-0.74478864880349 0.381169081397575 -0.546205498863303 0.0407376117548695
|
||||
S =
|
||||
14.2690954992615 0
|
||||
0 0.626828232417541
|
||||
0 0
|
||||
0 0
|
||||
V =
|
||||
-0.641423027995072 0.767187395072177
|
||||
-0.767187395072177 -0.641423027995072
|
||||
```
|
||||
|
||||
|
||||
### Source Blocks with Line Numbers {#source-blocks-with-line-numbers}
|
||||
|
||||
The Listing [3](#code-snippet--lst:matlab-line-numbers) has line numbers as the `-n` option was used.
|
||||
|
||||
Specific lines of codes can be referenced.
|
||||
For instance, the code used to specify the wanted the vertical label is on line [4](#org-coderef--967846-4).
|
||||
|
||||
<a id="code-snippet--lst:matlab-line-numbers"></a>
|
||||
{{< highlight matlab "linenos=table, linenostart=1, anchorlinenos=true, lineanchors=org-coderef--967846" >}}
|
||||
figure;
|
||||
plot(t, x)
|
||||
xlabel('Time [s]');
|
||||
ylabel('Output [V]');
|
||||
{{< /highlight >}}
|
||||
|
||||
|
||||
<div class="src-block-caption">
|
||||
<span class="src-block-number"><a href="#code-snippet--lst:matlab-line-numbers">Code Snippet 3</a></span>:
|
||||
Specify Labels
|
||||
</div>
|
||||
|
||||
Numbering can be continued by using `+n` option as shown below.
|
||||
|
||||
```matlab { linenos=table, linenostart=5 }
|
||||
figure;
|
||||
plot(t, u)
|
||||
xlabel('Time [s]');
|
||||
ylabel('Input [V]');
|
||||
```
|
||||
|
||||
|
||||
## Images {#images}
|
||||
|
||||
|
||||
### Normal Image {#normal-image}
|
||||
|
||||
Figure [3](#figure--fig:general-control-names) shows the results of the Tikz code of listing [4](#code-snippet--lst:tikz-test).
|
||||
|
||||
<a id="code-snippet--lst:tikz-test"></a>
|
||||
```latex
|
||||
\begin{tikzpicture}
|
||||
|
||||
% Blocs
|
||||
\node[block={2.0cm}{2.0cm}] (P) {$P$};
|
||||
\node[block={1.5cm}{1.5cm}, below=0.7 of P] (K) {$K$};
|
||||
|
||||
% Input and outputs coordinates
|
||||
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$);
|
||||
\coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$);
|
||||
\coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$);
|
||||
\coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$);
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (inputw) node[above left, align=right]{(weighted)\\exogenous inputs\\$w$} -- ++(-1.5, 0);
|
||||
\draw[<-] (inputu) -- ++(-0.8, 0) |- node[left, near start, align=right]{control signals\\$u$} (K.west);
|
||||
|
||||
\draw[->] (outputz) node[above right, align=left]{(weighted)\\exogenous outputs\\$z$} -- ++(1.5, 0);
|
||||
\draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east);
|
||||
\end{tikzpicture}
|
||||
```
|
||||
|
||||
<div class="src-block-caption">
|
||||
<span class="src-block-number"><a href="#code-snippet--lst:tikz-test">Code Snippet 4</a></span>:
|
||||
Tikz code that is used to generate Figure <a href="#org905963f">3</a>
|
||||
</div>
|
||||
|
||||
<a id="figure--fig:general-control-names"></a>
|
||||
|
||||
{{< figure src="figs/general_control_names.png" caption="<span class=\"figure-number\">Figure 3: </span>General Control Configuration" >}}
|
||||
|
||||
```md
|
||||
#+name: fig:general_control_names
|
||||
#+caption: General Control Configuration
|
||||
[[file:figs/general_control_names.png]]
|
||||
```
|
||||
|
||||
|
||||
### Wrap Image {#wrap-image}
|
||||
|
||||
<a id="figure--fig:general-control-names"></a>
|
||||
|
||||
{{< figure src="figs/general_control_names.png" caption="<span class=\"figure-number\">Figure 4: </span>General Control Configuration" >}}
|
||||
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque non semper turpis. Proin tristique ipsum at mauris viverra efficitur. Maecenas semper urna vitae hendrerit consectetur. Vivamus id odio et lectus pretium hendrerit ac in libero. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Pellentesque gravida, nibh vitae euismod mollis, dolor justo hendrerit mauris, sed dapibus velit magna ut purus. Mauris sagittis ligula in ante congue, vel rhoncus velit rutrum. In pulvinar elit nibh, a sodales enim iaculis sed. Maecenas et eleifend libero, vel congue urna. Praesent sit amet ornare lacus, nec maximus lectus.
|
||||
|
||||
Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae molestie mi. Ut sodales euismod mauris, vitae finibus orci sagittis a. Quisque fringilla ante mi, vel aliquet est mollis in. Nam rutrum, nibh vitae tincidunt ultrices, quam urna efficitur ipsum, eget tristique lorem purus vitae metus. Maecenas dictum varius eros. Sed aliquam quis tortor in ultricies. Suspendisse imperdiet, mi eget mattis porta, felis quam gravida mi, malesuada venenatis dui dui a libero. Duis in lorem eget elit fermentum accumsan. Cras consequat eros vehicula, laoreet neque nec, tincidunt odio. Phasellus eu arcu lacus. Aliquam vel sollicitudin ipsum, sed iaculis risus. In pulvinar purus libero, quis vestibulum ex lacinia vel. Ut imperdiet ut erat non vulputate.
|
||||
|
||||
```md
|
||||
#+name: fig:general_control_names
|
||||
#+caption: General Control Configuration
|
||||
#+attr_html: :float wrap-left
|
||||
#+attr_latex: :float wrap
|
||||
[[file:figs/general_control_names.png]]
|
||||
```
|
||||
|
||||
<a id="figure--fig:general-control-names"></a>
|
||||
|
||||
{{< figure src="figs/general_control_names.png" caption="<span class=\"figure-number\">Figure 5: </span>General Control Configuration" >}}
|
||||
|
||||
Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae molestie mi. Ut sodales euismod mauris, vitae finibus orci sagittis a. Quisque fringilla ante mi, vel aliquet est mollis in. Nam rutrum, nibh vitae tincidunt ultrices, quam urna efficitur ipsum, eget tristique lorem purus vitae metus. Maecenas dictum varius eros. Sed aliquam quis tortor in ultricies. Suspendisse imperdiet, mi eget mattis porta, felis quam gravida mi, malesuada venenatis dui dui a libero. Duis in lorem eget elit fermentum accumsan. Cras consequat eros vehicula, laoreet neque nec, tincidunt odio. Phasellus eu arcu lacus. Aliquam vel sollicitudin ipsum, sed iaculis risus. In pulvinar purus libero, quis vestibulum ex lacinia vel. Ut imperdiet ut erat non vulputate.
|
||||
|
||||
|
||||
### Sub Images {#sub-images}
|
||||
|
||||
Link to subfigure [2](#org-target--fig:general_control_names_1).
|
||||
|
||||
```md
|
||||
#+name: fig:subfigure
|
||||
#+caption: Subfigure Caption
|
||||
#+attr_latex: :environment subfigure :width 0.49\linewidth :align c
|
||||
| file:figs/general_control_names.png | file:figs/general_control_names.png |
|
||||
| <<fig:general_control_names_1>> sub figure caption | <<fig:general_control_names_2>> sub figure caption |
|
||||
```
|
||||
|
||||
<a id="table--fig:subfigure"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--fig:subfigure">Table 2</a></span>:
|
||||
Subfigure Caption
|
||||
</div>
|
||||
|
||||
|  |  |
|
||||
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|
||||
| <span class="org-target" id="org-target--fig:general_control_names_1"></span> sub figure caption | <span class="org-target" id="org-target--fig:general_control_names_2"></span> sub figure caption |
|
||||
|
||||
|
||||
## Tables {#tables}
|
||||
|
||||
Table [3](#table--tab:table-with-equations) shows a table with some mathematics inside.
|
||||
|
||||
<a id="table--tab:table-with-equations"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-with-equations">Table 3</a></span>:
|
||||
A Simple table with included math
|
||||
</div>
|
||||
|
||||
| \\(N\\) | \\(N^2\\) | \\(N^3\\) | \\(N^4\\) | \\(\sqrt n\\) | \\(\sqrt[4]N\\) |
|
||||
|---------|-----------|-----------|-----------|---------------|-----------------|
|
||||
| 1 | 1 | 1 | 1 | 1 | 1 |
|
||||
| 2 | 4 | 8 | 16 | 1.4142136 | 1.1892071 |
|
||||
| 3 | 9 | 27 | 81 | 1.7320508 | 1.3160740 |
|
||||
|
||||
<a id="table--tab:table-without-head"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-without-head">Table 4</a></span>:
|
||||
Table without Head
|
||||
</div>
|
||||
|
||||
| | **1** | **2** | **3** | **4** | **5** |
|
||||
|-------|-------|-------|-------|-------|-------|
|
||||
| **1** | 1 | 2 | 3 | 4 | 5 |
|
||||
| **2** | 2 | 4 | 6 | 8 | 10 |
|
||||
| **3** | 3 | 6 | 9 | 12 | 15 |
|
||||
| **4** | 4 | 8 | 12 | 16 | 20 |
|
||||
| **5** | 5 | 10 | 15 | 20 | 25 |
|
||||
|
||||
<a id="table--tab:table-multiple-heads"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-multiple-heads">Table 5</a></span>:
|
||||
Table with multiples groups
|
||||
</div>
|
||||
|
||||
| | **Classical Control** | **Modern Control** | **Robust Control** |
|
||||
|:--------------------------|:----------------------------------:|:------------------------------------:|:---------------------------------------------------------------------------------:|
|
||||
| **Date** | 1930- | 1960- | 1980- |
|
||||
| **Tools** | Transfer Functions | State Space formulation | Disk margin |
|
||||
| | Nyquist Plots | Riccati Equations | Systems and Signals Norms (\\(\mathcal{H}\_\infty\\), \\(\mathcal{H}\_2\\) Norms) |
|
||||
| | Bode Plots | | Closed Loop Transfer Functions |
|
||||
| | Phase and Gain margins | | Weighting Functions |
|
||||
| **Control Architectures** | Proportional, Integral, Derivative | Full State Feedback | General Control Configuration |
|
||||
| | Leads, Lags | LQR, LQG | |
|
||||
| | | Kalman Filters | |
|
||||
| **Advantages** | Study Stability | Automatic Synthesis | Automatic Synthesis |
|
||||
| | Simple | MIMO | MIMO |
|
||||
| | Natural | Optimization Problem | Optimization Problem |
|
||||
| | | | Guaranteed Robustness |
|
||||
| | | | Easy specification of performances |
|
||||
| **Disadvantages** | Manual Method | No Guaranteed Robustness | Required knowledge of specific tools |
|
||||
| | Only SISO | Difficult Rejection of Perturbations | Need a reasonably good model of the system |
|
||||
|
||||
|
||||
## Details {#details}
|
||||
|
||||
Below is some content hidden until you click the bar.
|
||||
|
||||
<details><summary>Hiden Part</summary>
|
||||
|
||||
Almost anything can be put here for instance this table below.
|
||||
|
||||
<a id="table--tab:table-with-equations-bis"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:table-with-equations-bis">Table 6</a></span>:
|
||||
A Simple table with included math
|
||||
</div>
|
||||
|
||||
| \\(N\\) | \\(N^2\\) | \\(N^3\\) | \\(N^4\\) | \\(\sqrt n\\) | \\(\sqrt[4]N\\) |
|
||||
|---------|-----------|-----------|-----------|---------------|-----------------|
|
||||
| 1 | 1 | 1 | 1 | 1 | 1 |
|
||||
| 2 | 4 | 8 | 16 | 1.4142136 | 1.1892071 |
|
||||
| 3 | 9 | 27 | 81 | 1.7320508 | 1.3160740 |
|
||||
|
||||
</details>
|
||||
|
||||
This `details` blocks can even be put in other blocks are shown below.
|
||||
|
||||
<details><summary>Answer</summary>
|
||||
|
||||
It is approximately **12,742 km**
|
||||
|
||||
</details>
|
||||
|
||||
<div class="question">
|
||||
|
||||
What is the approximate diameter of the earth?
|
||||
|
||||
<details><summary>Answer</summary>
|
||||
|
||||
It is approximately **12,742 km**
|
||||
|
||||
</details>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
## Videos {#videos}
|
||||
|
||||
{{< youtube SzA2YODtgK4 >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to Figure [3](#figure--fig:general-control-names).
|
||||
[^fn:2]: An other footnote.
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Tip-Tilt Mirrors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
@@ -14,9 +14,15 @@ Tags
|
||||
| Manufacturers | Country |
|
||||
|------------------------------------------------------------------------------------------------|-------------|
|
||||
| [Sercalo](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
|
||||
| [KOC](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
|
||||
| [KOC](http://www.koreaoptron.co.kr/default/newproduct/mems_01_02.php) | Korea |
|
||||
| [Mirrorcle](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
|
||||
| [Preciseley](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
|
||||
| [Hamamatsu](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
|
||||
| [Maradin](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
|
||||
| [Opus](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
|
||||
| [Opus](http://www.opusmicro.com/mems_en.html) | Taiwan |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Trainings"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -19,3 +19,9 @@ Mechatronics:
|
||||
Matlab:
|
||||
|
||||
- [Mathworks](https://www.mathworks.com/training-schedule/)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Trajectory Generation"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -14,3 +14,9 @@ Requirements
|
||||
Goals
|
||||
|
||||
Tools
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Transconductance Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{<relref "electronics.md#" >}}), [Voice Coil Actuators]({{<relref "voice_coil_actuators.md#" >}})
|
||||
: [Electronics]({{< relref "electronics.md" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators.md" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
@@ -14,3 +14,9 @@ Tags
|
||||
A Transconductance Amplifier converts the control voltage into current with a current source characteristic.
|
||||
|
||||
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Transimpedance Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
: [Electronics]({{< relref "electronics.md" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
@@ -21,6 +21,12 @@ It is generally used to interface a sensor which outputs a current proportional
|
||||
| Manufacturers | Country |
|
||||
|------------------------------------------------------------------------------------------------------------|---------|
|
||||
| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
| [MMF](https://www.mmf.de/signal_conditioners.htm) | Germany |
|
||||
| [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||
| [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Vibration Isolation"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,8 +1,14 @@
|
||||
+++
|
||||
title = "Virtual Sensor Fusion"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Voice Coil Actuators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{<relref "actuators.md#" >}})
|
||||
: [Actuators]({{< relref "actuators.md" >}})
|
||||
|
||||
|
||||
## Working Principle {#working-principle}
|
||||
@@ -17,12 +17,12 @@ Tags
|
||||
|
||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||
|
||||
([Schmidt, Schitter, and Rankers 2014](#org173764e))
|
||||
(<a href="#citeproc_bib_item_1">Schmidt, Schitter, and Rankers 2014</a>)
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
As the force is proportional to the current, a [Transconductance Amplifiers]({{<relref "transconductance_amplifiers.md#" >}}) (voltage-controller current source) is generally used as the driving electronics.
|
||||
As the force is proportional to the current, a [Transconductance Amplifiers]({{< relref "transconductance_amplifiers.md" >}}) (voltage-controller current source) is generally used as the driving electronics.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -41,7 +41,8 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
|
||||
| [Monticont](http://www.moticont.com/) | USA |
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org173764e"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. <i>The Design of High Performance Mechatronics - 2nd Revised Edition</i>. Ios Press.</div>
|
||||
</div>
|
||||
|
@@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Voltage Amplifier"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}}), [Piezoelectric Actuators]({{<relref "piezoelectric_actuators.md#" >}}), [Electronics]({{<relref "electronics.md#" >}})
|
||||
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators.md" >}}), [Electronics]({{< relref "electronics.md" >}})
|
||||
|
||||
|
||||
## Voltage Amplifiers to drive Capacitive Loads {#voltage-amplifiers-to-drive-capacitive-loads}
|
||||
@@ -19,11 +19,11 @@ Tags
|
||||
| [Piezo Drive](https://www.piezodrive.com/drivers/) | Australia |
|
||||
| [Falco System](https://www.falco-systems.com/products.html) | Netherlands |
|
||||
| [PI](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
||||
| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide_ID=2085) | USA |
|
||||
| [Lab Systems](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
|
||||
| [Piezomechanics](https://www.piezomechanik.com/products/) | Germany |
|
||||
| [Cedrat Technologies](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
|
||||
| [Trek](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
|
||||
| [Trek](https://www.trekinc.com/products/HV_Amp.asp) | USA |
|
||||
| [Madcitylabs](http://www.madcitylabs.com/piezoactuators.html) | USA |
|
||||
| [Piezosystem](https://www.piezosystem.com/products/controller/) | Germany |
|
||||
| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
|
||||
@@ -34,11 +34,11 @@ Tags
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org63f8350)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#figure--fig:voltage-amplifier-capacitance)).
|
||||
|
||||
<a id="org63f8350"></a>
|
||||
<a id="figure--fig:voltage-amplifier-capacitance"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="<span class=\"figure-number\">Figure 1: </span>Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
The equation linking the voltage to the current is:
|
||||
\\[ I = C \frac{dU}{dt} \\]
|
||||
@@ -56,7 +56,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#orgfbd4a45).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#figure--fig:voltage-amplifier-max-V-piezo).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@@ -70,9 +70,9 @@ The maximum voltage as a function of frequency is shown in Figure [2](#orgfbd4a4
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="orgfbd4a45"></a>
|
||||
<a id="figure--fig:voltage-amplifier-max-V-piezo"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="<span class=\"figure-number\">Figure 2: </span>Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
Similarly, the voltage rise time is determined by the Capacitance of the piezoelectric stack and by the maximum current that the amplifier can deliver:
|
||||
\\[ t\_c = \frac{\Delta U C}{I\_\text{max}} \\]
|
||||
@@ -90,7 +90,7 @@ Specifications are usually:
|
||||
|
||||
- Maximum Current
|
||||
- DC Gain (usually around 10)
|
||||
- Output Noise or [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}})
|
||||
- Output Noise or [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})
|
||||
|
||||
The bandwidth can be estimated from the Maximum Current and the Capacitance of the Piezoelectric Actuator.
|
||||
|
||||
@@ -106,7 +106,7 @@ This can pose several problems:
|
||||
|
||||
### Noise {#noise}
|
||||
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2170119)).
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in (<a href="#citeproc_bib_item_3">Van Spengen 2020</a>).
|
||||
|
||||
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
||||
|
||||
@@ -118,14 +118,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
|
||||
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
||||
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
||||
|
||||
This is discussed in ([Spengen 2017](#org55e5dcc)).
|
||||
|
||||
This is discussed in (<a href="#citeproc_bib_item_2">Van Spengen 2017</a>).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org200fc06"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
||||
<a id="org55e5dcc"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
|
||||
<a id="org2170119"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J., and Kam K. Leang. 2014. <i>Design, Modeling and Control of Nanopositioning Systems</i>. Advances in Industrial Control. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-06617-2">10.1007/978-3-319-06617-2</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user