Update Content - 2022-03-15
This commit is contained in:
@@ -1,19 +1,19 @@
|
||||
+++
|
||||
title = "Design, modeling and control of nanopositioning systems"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
description = "Talks about various topics related to nano-positioning systems."
|
||||
keywords = ["Control", "Metrology", "Flexible Joints"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Piezoelectric Actuators]({{<relref "piezoelectric_actuators.md#" >}}), [Flexible Joints]({{<relref "flexible_joints.md#" >}})
|
||||
: [Piezoelectric Actuators]({{< relref "piezoelectric_actuators.md" >}}), [Flexible Joints]({{< relref "flexible_joints.md" >}})
|
||||
|
||||
Reference
|
||||
: ([Fleming and Leang 2014](#orgd16fb21))
|
||||
: (<a href="#citeproc_bib_item_1">Fleming and Leang 2014</a>)
|
||||
|
||||
Author(s)
|
||||
: Fleming, A. J., & Leang, K. K.
|
||||
: Fleming, A. J., & Leang, K. K.
|
||||
|
||||
Year
|
||||
: 2014
|
||||
@@ -728,16 +728,15 @@ Year
|
||||
|
||||
### Amplifier and Piezo electrical models {#amplifier-and-piezo-electrical-models}
|
||||
|
||||
<a id="orgb084203"></a>
|
||||
<a id="figure--fig:fleming14-amplifier-model"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/fleming14_amplifier_model.png" caption="Figure 1: A voltage source \\(V\_s\\) driving a piezoelectric load. The actuator is modeled by a capacitance \\(C\_p\\) and strain-dependent voltage source \\(V\_p\\). The resistance \\(R\_s\\) is the output impedance and \\(L\\) the cable inductance." >}}
|
||||
{{< figure src="/ox-hugo/fleming14_amplifier_model.png" caption="<span class=\"figure-number\">Figure 1: </span>A voltage source \\(V\_s\\) driving a piezoelectric load. The actuator is modeled by a capacitance \\(C\_p\\) and strain-dependent voltage source \\(V\_p\\). The resistance \\(R\_s\\) is the output impedance and \\(L\\) the cable inductance." >}}
|
||||
|
||||
Consider the electrical circuit shown in Figure [1](#orgb084203) where a voltage source is connected to a piezoelectric actuator.
|
||||
Consider the electrical circuit shown in Figure [1](#figure--fig:fleming14-amplifier-model) where a voltage source is connected to a piezoelectric actuator.
|
||||
The actuator is modeled as a capacitance \\(C\_p\\) in series with a strain-dependent voltage source \\(V\_p\\).
|
||||
The resistance \\(R\_s\\) and inductance \\(L\\) are the source impedance and the cable inductance respectively.
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Typical inductance of standard RG-58 coaxial cable is \\(250 nH/m\\).
|
||||
Typical value of \\(R\_s\\) is between \\(10\\) and \\(100 \Omega\\).
|
||||
@@ -810,7 +809,6 @@ For sinusoidal signals, the amplifiers slew rate must exceed:
|
||||
where \\(V\_{p-p}\\) is the peak to peak voltage and \\(f\\) is the frequency.
|
||||
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
If a 300kHz sine wave is to be reproduced with an amplitude of 10V, the required slew rate is \\(\approx 20 V/\mu s\\).
|
||||
|
||||
@@ -853,7 +851,8 @@ The bandwidth limitations of standard piezoelectric drives were identified as:
|
||||
### References {#references}
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgd16fb21"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, Andrew J., and Kam K. Leang. 2014. <i>Design, Modeling and Control of Nanopositioning Systems</i>. Advances in Industrial Control. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-06617-2">10.1007/978-3-319-06617-2</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user