Update Content - 2022-03-15

This commit is contained in:
2022-03-15 16:40:48 +01:00
parent e6390908c4
commit 22fb3361a5
148 changed files with 3981 additions and 3197 deletions

View File

@@ -1,17 +1,17 @@
+++
title = "Force feedback versus acceleration feedback in active vibration isolation"
author = ["Thomas Dehaeze"]
author = ["Dehaeze Thomas"]
draft = false
+++
Tags
: [Vibration Isolation]({{< relref "vibration_isolation" >}})
: [Vibration Isolation]({{< relref "vibration_isolation.md" >}})
Reference
: ([Preumont et al. 2002](#orgbec44eb))
: (<a href="#citeproc_bib_item_1">Preumont et al. 2002</a>)
Author(s)
: Preumont, A., A. Francois, Bossens, F., & Abu-Hanieh, A.
: Preumont, A., A. Francois, Bossens, F., &amp; Abu-Hanieh, A.
Year
: 2002
@@ -26,16 +26,16 @@ The force applied to a **rigid body** is proportional to its acceleration, thus
Thus force feedback and acceleration feedback are equivalent for solid bodies.
When there is a flexible payload, the two sensing options are not longer equivalent.
- For light payload (Figure [1](#orga040a9a)), the acceleration feedback gives larger damping on the higher mode.
- For heavy payload (Figure [2](#org1916ab2)), the acceleration feedback do not give alternating poles and zeros and thus for high control gains, the system becomes unstable
- For light payload (Figure [1](#figure--fig:preumont02-force-acc-fb-light)), the acceleration feedback gives larger damping on the higher mode.
- For heavy payload (Figure [2](#figure--fig:preumont02-force-acc-fb-heavy)), the acceleration feedback do not give alternating poles and zeros and thus for high control gains, the system becomes unstable
<a id="orga040a9a"></a>
<a id="figure--fig:preumont02-force-acc-fb-light"></a>
{{< figure src="/ox-hugo/preumont02_force_acc_fb_light.png" caption="Figure 1: Root locus for **light** flexible payload, (a) Force feedback, (b) acceleration feedback" >}}
{{< figure src="/ox-hugo/preumont02_force_acc_fb_light.png" caption="<span class=\"figure-number\">Figure 1: </span>Root locus for **light** flexible payload, (a) Force feedback, (b) acceleration feedback" >}}
<a id="org1916ab2"></a>
<a id="figure--fig:preumont02-force-acc-fb-heavy"></a>
{{< figure src="/ox-hugo/preumont02_force_acc_fb_heavy.png" caption="Figure 2: Root locus for **heavy** flexible payload, (a) Force feedback, (b) acceleration feedback" >}}
{{< figure src="/ox-hugo/preumont02_force_acc_fb_heavy.png" caption="<span class=\"figure-number\">Figure 2: </span>Root locus for **heavy** flexible payload, (a) Force feedback, (b) acceleration feedback" >}}
Guaranteed stability of the force feedback:
@@ -46,7 +46,8 @@ The same is true for the transfer function from the force actuator to the relati
> According to physical interpretation of the zeros, they represent the resonances of the subsystem constrained by the sensor and the actuator.
## Bibliography {#bibliography}
<a id="orgbec44eb"></a>Preumont, A., A. François, F. Bossens, and A. Abu-Hanieh. 2002. “Force Feedback Versus Acceleration Feedback in Active Vibration Isolation.” _Journal of Sound and Vibration_ 257 (4):60513. <https://doi.org/10.1006/jsvi.2002.5047>.
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Preumont, A., A. François, F. Bossens, and A. Abu-Hanieh. 2002. “Force Feedback versus Acceleration Feedback in Active Vibration Isolation.” <i>Journal of Sound and Vibration</i> 257 (4): 60513. doi:<a href="https://doi.org/10.1006/jsvi.2002.5047">10.1006/jsvi.2002.5047</a>.</div>
</div>