Update Content - 2022-03-15
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Modeling and design of flexure jointed stewart platforms for control purposes"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -9,7 +9,7 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: ([McInroy 2002](#org2871bf9))
|
||||
: (<a href="#citeproc_bib_item_2">McInroy 2002</a>)
|
||||
|
||||
Author(s)
|
||||
: McInroy, J.
|
||||
@@ -17,7 +17,7 @@ Author(s)
|
||||
Year
|
||||
: 2002
|
||||
|
||||
This short paper is very similar to ([McInroy 1999](#org1d169f9)).
|
||||
This short paper is very similar to (<a href="#citeproc_bib_item_1">McInroy 1999</a>).
|
||||
|
||||
> This paper develops guidelines for designing the flexure joints to facilitate closed-loop control.
|
||||
|
||||
@@ -36,15 +36,15 @@ This short paper is very similar to ([McInroy 1999](#org1d169f9)).
|
||||
|
||||
## Flexure Jointed Hexapod Dynamics {#flexure-jointed-hexapod-dynamics}
|
||||
|
||||
<a id="org4ea1e8b"></a>
|
||||
<a id="figure--fig:mcinroy02-leg-model"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy02_leg_model.png" caption="Figure 1: The dynamics of the ith strut. A parallel spring, damper, and actautor drives the moving mass of the strut and a payload" >}}
|
||||
{{< figure src="/ox-hugo/mcinroy02_leg_model.png" caption="<span class=\"figure-number\">Figure 1: </span>The dynamics of the ith strut. A parallel spring, damper, and actautor drives the moving mass of the strut and a payload" >}}
|
||||
|
||||
The strut can be modeled as consisting of a parallel arrangement of an actuator force, a spring and some damping driving a mass (Figure [1](#org4ea1e8b)).
|
||||
The strut can be modeled as consisting of a parallel arrangement of an actuator force, a spring and some damping driving a mass (Figure [1](#figure--fig:mcinroy02-leg-model)).
|
||||
|
||||
Thus, **the strut does not output force directly, but rather outputs a mechanically filtered force**.
|
||||
|
||||
The model of the strut are shown in Figure [1](#org4ea1e8b) with:
|
||||
The model of the strut are shown in Figure [1](#figure--fig:mcinroy02-leg-model) with:
|
||||
|
||||
- \\(m\_{s\_i}\\) moving strut mass
|
||||
- \\(k\_i\\) spring constant
|
||||
@@ -78,10 +78,10 @@ The payload is modeled as a rigid body:
|
||||
|
||||
\begin{equation}
|
||||
\underbrace{\begin{bmatrix}
|
||||
m I\_3 & 0\_{3\times 3} \\\\\\
|
||||
m I\_3 & 0\_{3\times 3} \\\\
|
||||
0\_{3\times 3} & {}^cI
|
||||
\end{bmatrix}}\_{M\_x} \ddot{\mathcal{X}} + \underbrace{\begin{bmatrix}
|
||||
0\_{3 \times 1} \\ \omega \times {}^cI\omega
|
||||
0\_{3 \times 1} \\\ \omega \times {}^cI\omega
|
||||
\end{bmatrix}}\_{c(\omega)} = \mathcal{F} \label{eq:payload\_dynamics}
|
||||
\end{equation}
|
||||
|
||||
@@ -107,7 +107,7 @@ where \\(J\\) is the manipulator Jacobian and \\({}^U\_BR\\) is the rotation mat
|
||||
The total generalized force acting on the payload is the sum of the strut, exogenous, and gravity forces:
|
||||
|
||||
\begin{equation}
|
||||
\mathcal{F} = {}^UJ^T f\_p + \mathcal{F}\_e - \begin{bmatrix} mg \\ 0\_{3\times 1} \end{bmatrix} \label{eq:generalized\_force}
|
||||
\mathcal{F} = {}^UJ^T f\_p + \mathcal{F}\_e - \begin{bmatrix} mg \\\ 0\_{3\times 1} \end{bmatrix} \label{eq:generalized\_force}
|
||||
\end{equation}
|
||||
|
||||
where:
|
||||
@@ -115,10 +115,10 @@ where:
|
||||
- \\(\mathcal{F}\_e\\) represents a vector of exogenous generalized forces applied at the center of mass
|
||||
- \\(g\\) is the gravity vector
|
||||
|
||||
By combining \eqref{eq:strut_dynamics_vec}, \eqref{eq:payload_dynamics} and \eqref{eq:generalized_force}, a single equation describing the dynamics of a flexure jointed hexapod can be found:
|
||||
By combining <eq:strut_dynamics_vec>, <eq:payload_dynamics> and <eq:generalized_force>, a single equation describing the dynamics of a flexure jointed hexapod can be found:
|
||||
|
||||
\begin{equation}
|
||||
{}^UJ^T [ f\_m - M\_s \ddot{l} - B \dot{l} - K(l - l\_r) - M\_s \ddot{q}\_u - M\_s g\_u + M\_s v\_2] + \mathcal{F}\_e - \begin{bmatrix} mg \\ 0\_{3\times 1} \end{bmatrix} = M\_x \ddot{\mathcal{X}} + c(\omega) \label{eq:eom\_fjh}
|
||||
{}^UJ^T [ f\_m - M\_s \ddot{l} - B \dot{l} - K(l - l\_r) - M\_s \ddot{q}\_u - M\_s g\_u + M\_s v\_2] + \mathcal{F}\_e - \begin{bmatrix} mg \\\ 0\_{3\times 1} \end{bmatrix} = M\_x \ddot{\mathcal{X}} + c(\omega) \label{eq:eom\_fjh}
|
||||
\end{equation}
|
||||
|
||||
Joint (\\(l\\)) and Cartesian (\\(\mathcal{X}\\)) terms are still mixed.
|
||||
@@ -132,21 +132,21 @@ Many prior hexapod dynamic formulations assume that the strut exerts force only
|
||||
The flexure joints Hexapods transmit forces (or torques) proportional to the deflection of the joints.
|
||||
This section establishes design guidelines for the spherical flexure joint to guarantee that the dynamics remain tractable for control.
|
||||
|
||||
<a id="org5bc5fa8"></a>
|
||||
<a id="figure--fig:mcinroy02-model-strut-joint"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy02_model_strut_joint.png" caption="Figure 2: A simplified dynamic model of a strut and its joint" >}}
|
||||
{{< figure src="/ox-hugo/mcinroy02_model_strut_joint.png" caption="<span class=\"figure-number\">Figure 2: </span>A simplified dynamic model of a strut and its joint" >}}
|
||||
|
||||
Figure [2](#org5bc5fa8) depicts a strut, along with the corresponding force diagram.
|
||||
Figure [2](#figure--fig:mcinroy02-model-strut-joint) depicts a strut, along with the corresponding force diagram.
|
||||
The force diagram is obtained using standard finite element assumptions (\\(\sin \theta \approx \theta\\)).
|
||||
Damping terms are neglected.
|
||||
\\(k\_r\\) denotes the rotational stiffness of the spherical joint.
|
||||
|
||||
From Figure [2](#org5bc5fa8) (b), Newton's second law yields:
|
||||
From Figure [2](#figure--fig:mcinroy02-model-strut-joint) (b), Newton's second law yields:
|
||||
|
||||
\begin{equation}
|
||||
f\_p = \begin{bmatrix}
|
||||
-f\_m + m\_s \Delta \ddot{x} + k\Delta x \\\\\\
|
||||
m\_s \Delta \ddot{y} + \frac{k\_r}{l^2} \Delta y \\\\\\
|
||||
-f\_m + m\_s \Delta \ddot{x} + k\Delta x \\\\
|
||||
m\_s \Delta \ddot{y} + \frac{k\_r}{l^2} \Delta y \\\\
|
||||
m\_s \Delta \ddot{z} + \frac{k\_r}{l^2} \Delta z
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
@@ -157,16 +157,16 @@ The force is aligned perfectly with the strut only if \\(m\_s = 0\\) and \\(k\_r
|
||||
To examine the passive behavior, let \\(f\_m = 0\\) and consider a sinusoidal motion:
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} =
|
||||
\begin{bmatrix} A\_x \cos \omega t \\ A\_y \cos \omega t \\ A\_z \cos \omega t \end{bmatrix}
|
||||
\begin{bmatrix} \Delta x \\\ \Delta y \\\ \Delta z \end{bmatrix} =
|
||||
\begin{bmatrix} A\_x \cos \omega t \\\ A\_y \cos \omega t \\\ A\_z \cos \omega t \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
This yields:
|
||||
|
||||
\begin{equation}
|
||||
f\_p = \begin{bmatrix}
|
||||
\Big( -m\_s \omega^2 + k \Big) A\_x \cos \omega t \\\\\\
|
||||
\Big( -m\_s \omega^2 + \frac{k\_r}{l^2} \Big) A\_y \cos \omega t \\\\\\
|
||||
\Big( -m\_s \omega^2 + k \Big) A\_x \cos \omega t \\\\
|
||||
\Big( -m\_s \omega^2 + \frac{k\_r}{l^2} \Big) A\_y \cos \omega t \\\\
|
||||
\Big( -m\_s \omega^2 + \frac{k\_r}{l^2} \Big) A\_z \cos \omega t
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
@@ -189,7 +189,6 @@ The first part depends on the mechanical terms and the frequency of the movement
|
||||
\end{equation}
|
||||
|
||||
<div class="important">
|
||||
<div></div>
|
||||
|
||||
In order to get dominance at low frequencies, the hexapod must be designed so that:
|
||||
|
||||
@@ -201,13 +200,12 @@ In order to get dominance at low frequencies, the hexapod must be designed so th
|
||||
|
||||
This puts a limit on the rotational stiffness of the flexure joint and shows that as the strut is made softer (by decreasing \\(k\\)), the spherical flexure joint must be made proportionately softer.
|
||||
|
||||
By satisfying \eqref{eq:cond_stiff}, \\(f\_p\\) can be aligned with the strut for frequencies much below the spherical joint's resonance mode:
|
||||
By satisfying <eq:cond_stiff>, \\(f\_p\\) can be aligned with the strut for frequencies much below the spherical joint's resonance mode:
|
||||
\\[ \omega \ll \sqrt{\frac{k\_r}{m\_s l^2}} \rightarrow x\_{\text{gain}\_\omega} \approx \frac{k}{k\_r/l^2} \gg 1 \\]
|
||||
At frequencies much above the strut's resonance mode, \\(f\_p\\) is not dominated by its \\(x\\) component:
|
||||
\\[ \omega \gg \sqrt{\frac{k}{m\_s}} \rightarrow x\_{\text{gain}\_\omega} \approx 1 \\]
|
||||
|
||||
<div class="important">
|
||||
<div></div>
|
||||
|
||||
To ensure that the control system acts only in the band of frequencies where dominance is retained, the control bandwidth can be selected so that:
|
||||
|
||||
@@ -226,16 +224,15 @@ In this case, it is reasonable to use:
|
||||
\end{equation}
|
||||
|
||||
<div class="important">
|
||||
<div></div>
|
||||
|
||||
By designing the flexure jointed hexapod and its controller so that both \eqref{eq:cond_stiff} and \eqref{eq:cond_bandwidth} are met, the dynamics of the hexapod can be greatly reduced in complexity.
|
||||
By designing the flexure jointed hexapod and its controller so that both <eq:cond_stiff> and <eq:cond_bandwidth> are met, the dynamics of the hexapod can be greatly reduced in complexity.
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
## Relationships between joint and cartesian space {#relationships-between-joint-and-cartesian-space}
|
||||
|
||||
Equation \eqref{eq:eom_fjh} is not suitable for control analysis and design because \\(\ddot{\mathcal{X}}\\) is implicitly a function of \\(\ddot{q}\_u\\).
|
||||
Equation <eq:eom_fjh> is not suitable for control analysis and design because \\(\ddot{\mathcal{X}}\\) is implicitly a function of \\(\ddot{q}\_u\\).
|
||||
|
||||
This section will derive this implicit relationship.
|
||||
Let denote:
|
||||
@@ -269,9 +266,9 @@ By using the vector triple identity \\(a \cdot (b \times c) = b \cdot (c \times
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org1d169f9"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="org2871bf9"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 Ieee International Conference on Control Applications (Cat. No.99ch36328)</i>, nil. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>Ieee/Asme Transactions on Mechatronics</i> 7 (1): 95–99. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user