Update Content - 2022-03-15
This commit is contained in:
@@ -1,17 +1,17 @@
|
||||
+++
|
||||
title = "Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation" >}}), [Actuators]({{< relref "actuators" >}})
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation.md" >}}), [Actuators]({{< relref "actuators.md" >}})
|
||||
|
||||
Reference
|
||||
: ([Ito and Schitter 2016](#org3484be8))
|
||||
: (<a href="#citeproc_bib_item_1">Ito and Schitter 2016</a>)
|
||||
|
||||
Author(s)
|
||||
: Ito, S., & Schitter, G.
|
||||
: Ito, S., & Schitter, G.
|
||||
|
||||
Year
|
||||
: 2016
|
||||
@@ -41,9 +41,9 @@ In this paper, the piezoelectric actuator/electronics adds a time delay which is
|
||||
- **Low Stiffness** actuator is defined as the ones where the transmissibility stays below 0dB at all frequency
|
||||
- **High Stiffness** actuator is defined as the ones where the transmissibility goes above 0dB at some frequency
|
||||
|
||||
<a id="org7e94abb"></a>
|
||||
<a id="figure--fig:ito16-low-high-stiffness-actuators"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ito16_low_high_stiffness_actuators.png" caption="Figure 1: Definition of low-stiffness and high-stiffness actuator" >}}
|
||||
{{< figure src="/ox-hugo/ito16_low_high_stiffness_actuators.png" caption="<span class=\"figure-number\">Figure 1: </span>Definition of low-stiffness and high-stiffness actuator" >}}
|
||||
|
||||
|
||||
## Low-Stiffness / High-Stiffness characteristics {#low-stiffness-high-stiffness-characteristics}
|
||||
@@ -54,9 +54,9 @@ In this paper, the piezoelectric actuator/electronics adds a time delay which is
|
||||
|
||||
## Controller Design {#controller-design}
|
||||
|
||||
<a id="org02696ae"></a>
|
||||
<a id="figure--fig:ito16-transmissibility"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ito16_transmissibility.png" caption="Figure 2: Obtained transmissibility" >}}
|
||||
{{< figure src="/ox-hugo/ito16_transmissibility.png" caption="<span class=\"figure-number\">Figure 2: </span>Obtained transmissibility" >}}
|
||||
|
||||
|
||||
## Discussion {#discussion}
|
||||
@@ -67,7 +67,8 @@ In practice, this is difficult to achieve with piezoelectric actuators as their
|
||||
In contrast, the frequency band between the first and the other resonances of Lorentz actuators can be broad by design making them more suitable to construct a low-stiffness actuators.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org3484be8"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>Ieee/Asme Transactions on Mechatronics</i> 21 (2): 1169–78. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user