Update Content - 2022-03-15
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Active structural vibration control: a review"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
@@ -9,10 +9,10 @@ Tags
|
||||
|
||||
|
||||
Reference
|
||||
: ([Alkhatib and Golnaraghi 2003](#orgdec9959))
|
||||
: (<a href="#citeproc_bib_item_1">Alkhatib and Golnaraghi 2003</a>)
|
||||
|
||||
Author(s)
|
||||
: Alkhatib, R., & Golnaraghi, M. F.
|
||||
: Alkhatib, R., & Golnaraghi, M. F.
|
||||
|
||||
Year
|
||||
: 2003
|
||||
@@ -123,14 +123,14 @@ Uncertainty can be divided into four types:
|
||||
- neglected nonlinearities
|
||||
|
||||
The \\(\mathcal{H}\_\infty\\) controller is developed to address uncertainty by systematic means.
|
||||
A general block diagram of the control system is shown figure [1](#orgd2fc896).
|
||||
A general block diagram of the control system is shown figure [1](#figure--fig:alkhatib03-hinf-control).
|
||||
|
||||
A **frequency shaped filter** \\(W(s)\\) coupled to selected inputs and outputs of the plant is included.
|
||||
The outputs of this frequency shaped filter define the error ouputs used to evaluate the system performance and generate the **cost** that will be used in the design process.
|
||||
|
||||
<a id="orgd2fc896"></a>
|
||||
<a id="figure--fig:alkhatib03-hinf-control"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/alkhatib03_hinf_control.png" caption="Figure 1: Block diagram for robust control" >}}
|
||||
{{< figure src="/ox-hugo/alkhatib03_hinf_control.png" caption="<span class=\"figure-number\">Figure 1: </span>Block diagram for robust control" >}}
|
||||
|
||||
The generalized plan \\(G\\) can be partitionned according to the input-output variables. And we have that the transfer function matrix from \\(d\\) to \\(z\\) is:
|
||||
\\[ H\_{z/d} = G\_{z/d} + G\_{z/u} K (I - G\_{y/u} K)^{-1} G\_{y/d} \\]
|
||||
@@ -144,7 +144,7 @@ The objective of \\(\mathcal{H}\_\infty\\) control is to design an admissible co
|
||||
The control \\(u(t)\\) is designed to minimize a cost function \\(J\\), given the initial conditions \\(z(t\_0)\\) and \\(\dot{z}(t\_0)\\) subject to the constraint that:
|
||||
|
||||
\begin{align\*}
|
||||
\dot{z} &= Az + Bu\\\\\\
|
||||
\dot{z} &= Az + Bu\\\\
|
||||
y &= Cz
|
||||
\end{align\*}
|
||||
|
||||
@@ -200,11 +200,11 @@ Two different methods
|
||||
|
||||
## Active Control Effects on the System {#active-control-effects-on-the-system}
|
||||
|
||||
<a id="org4678494"></a>
|
||||
<a id="figure--fig:alkhatib03-1dof-control"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/alkhatib03_1dof_control.png" caption="Figure 2: 1 DoF control of a spring-mass-damping system" >}}
|
||||
{{< figure src="/ox-hugo/alkhatib03_1dof_control.png" caption="<span class=\"figure-number\">Figure 2: </span>1 DoF control of a spring-mass-damping system" >}}
|
||||
|
||||
Consider the control system figure [2](#org4678494), the equation of motion of the system is:
|
||||
Consider the control system figure [2](#figure--fig:alkhatib03-1dof-control), the equation of motion of the system is:
|
||||
\\[ m\ddot{x} + c\dot{x} + kx = f\_a + f \\]
|
||||
|
||||
The controller force can be expressed as: \\(f\_a = -g\_a \ddot{x} + g\_v \dot{x} + g\_d x\\). The equation of motion becomes:
|
||||
@@ -225,7 +225,8 @@ The problem of optimizing the locations of the actuators can be more significant
|
||||
If the actuator is placed at the wrong location, the system will require a greater force control. In that case, the system is said to have a **low degree of controllability**.
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgdec9959"></a>Alkhatib, Rabih, and M. F. Golnaraghi. 2003. “Active Structural Vibration Control: A Review.” _The Shock and Vibration Digest_ 35 (5):367–83. <https://doi.org/10.1177/05831024030355002>.
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Alkhatib, Rabih, and M. F. Golnaraghi. 2003. “Active Structural Vibration Control: A Review.” <i>The Shock and Vibration Digest</i> 35 (5): 367–83. doi:<a href="https://doi.org/10.1177/05831024030355002">10.1177/05831024030355002</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user