Update many files

PhDthesis were categorized as articles.
Add "fron matter" to specify zettels category
This commit is contained in:
2021-09-29 22:30:09 +02:00
parent 5c68a218ca
commit 158dfe302f
70 changed files with 821 additions and 757 deletions

View File

@@ -2,6 +2,7 @@
title = "Interferometers"
author = ["Thomas Dehaeze"]
draft = false
category = "equipment"
+++
Tags
@@ -24,12 +25,12 @@ Tags
## Reviews {#reviews}
([Ducourtieux 2018](#orgba5debb), [2018](#orgba5debb); [Bobroff 1993](#org9cfc0be), [1993](#org9cfc0be); [Thurner et al. 2015](#org9f4a3ed), [2015](#org9f4a3ed); [Loughridge and Abramovitch 2013](#org2c02ae6))
([Ducourtieux 2018](#org538e4dc), [2018](#org538e4dc); [Bobroff 1993](#org9f4652e), [1993](#org9f4652e); [Thurner et al. 2015](#orgdcf4929), [2015](#orgdcf4929); [Loughridge and Abramovitch 2013](#orgd91ce9e))
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org9f4a3ed))).
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#orgdcf4929))).
<a id="table--tab:index-air"></a>
<div class="table-caption">
@@ -64,16 +65,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
## Interferometer Precision {#interferometer-precision}
Figure [1](#org1406d51) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgcfb1fbe))).
Figure [1](#org24527f3) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org0cf5512))).
<a id="org1406d51"></a>
<a id="org24527f3"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
## Sources of uncertainty {#sources-of-uncertainty}
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgba5debb)).
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org538e4dc)).
It includes:
@@ -83,10 +84,10 @@ It includes:
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
- These errors can partially be compensated using an environmental unit.
- Air turbulence (Figure [2](#org690599c))
- Air turbulence (Figure [2](#org1d0f37d))
- Non linearity
<a id="org690599c"></a>
<a id="org1d0f37d"></a>
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
@@ -94,12 +95,12 @@ It includes:
## Bibliography {#bibliography}
<a id="org9cfc0be"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” _Measurement Science and Technology_ 4 (9):90726. <https://doi.org/10.1088/0957-0233/4/9/001>.
<a id="org9f4652e"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” _Measurement Science and Technology_ 4 (9):90726. <https://doi.org/10.1088/0957-0233/4/9/001>.
<a id="orgba5debb"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
<a id="org538e4dc"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
<a id="orgcfb1fbe"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.
<a id="org0cf5512"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.
<a id="org2c02ae6"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In _2013 American Control Conference_, nil. <https://doi.org/10.1109/acc.2013.6580402>.
<a id="orgd91ce9e"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In _2013 American Control Conference_, nil. <https://doi.org/10.1109/acc.2013.6580402>.
<a id="org9f4a3ed"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:305163.
<a id="orgdcf4929"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:305163.