Update many files
PhDthesis were categorized as articles. Add "fron matter" to specify zettels category
This commit is contained in:
@@ -3,17 +3,18 @@ title = "Analog to Digital Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
keywords = ["electronics"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
||||
|
||||
## Types of Analog to Digital Converters {#types-of-analog-to-digital-converters}
|
||||
|
||||
<https://dewesoft.com/daq/types-of-adc-converters>
|
||||
|
||||
- Delta Sigma ([Baker 2011](#org60f0e22))
|
||||
- Delta Sigma ([Baker 2011](#orgbdb61af))
|
||||
- Successive Approximation
|
||||
|
||||
|
||||
@@ -32,9 +33,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
|
||||
Interestingly, the noise amplitude is uniformly distributed.
|
||||
|
||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgee08810)).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org4bd731c)).
|
||||
|
||||
<a id="orgee08810"></a>
|
||||
<a id="org4bd731c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||
|
||||
@@ -89,4 +90,4 @@ The quantization is:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org60f0e22"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
<a id="orgbdb61af"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
|
Reference in New Issue
Block a user