Update Content - 2025-07-18
This commit is contained in:
@@ -8,52 +8,107 @@ Tags
|
||||
:
|
||||
|
||||
|
||||
## Electrical Analogy - Lumped Mass Modeling {#electrical-analogy-lumped-mass-modeling}
|
||||
|
||||
The difference in temperature \\(\Delta T\\) is driving potential energy flow \\(Q\\) (in watts):
|
||||
|
||||
\begin{equation}
|
||||
\Delta T = R\_{th} \cdot Q
|
||||
\end{equation}
|
||||
|
||||
\\(R\_{th}\\) is the analogy of a "thermal resistance", and is expressed in K/W.
|
||||
|
||||
|
||||
## Conduction (diffusion) {#conduction--diffusion}
|
||||
|
||||
The _conduction_ corresponds to the heat transfer \\(P\\) (in watt) through molecular agitation within a material and is specified with:
|
||||
\\[ P = \frac{\lambda \cdot A \cdot \Delta T}{L} \quad [W] \\]
|
||||
The _conduction_ corresponds to the heat transfer \\(Q\\) (in watt) through molecular agitation within a material.
|
||||
|
||||
\begin{equation}
|
||||
R\_{th} = \frac{d}{\lambda A}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(\lambda\\) the thermal conductivity in \\([W/m \cdot K]\\)
|
||||
- \\(A\\) the surface area in \\([m^2]\\)
|
||||
- \\(\Delta T\\) the temperature difference in \\([K]\\)
|
||||
- \\(L\\) the length of the barrier in \\([m]\\)
|
||||
- \\(d\\) the length of the barrier in \\([m]\\)
|
||||
|
||||
|
||||
## Convection {#convection}
|
||||
|
||||
The convection corresponds to the heat transfer through flow of a fluid.
|
||||
The convection corresponds to the heat transfer \\(Q\\) through flow of a fluid.
|
||||
It can be either _natural_ or _forced_.
|
||||
|
||||
The _forced convection_ \\(P\\) (in watt) can be described with:
|
||||
\\[ P = h A (T\_0 - T\_f) \quad [W] \\]
|
||||
\begin{equation}
|
||||
R\_{th} = \frac{1}{h A}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(h\\) the convection heat transfer coefficient in \\([W/m^2 \cdot K]\\).
|
||||
\\(h \approx 10.5 - v + 10\sqrt{v}\\) with \\(v\\) the velocity of the object through the fluid in \\([m/s]\\)
|
||||
Typically:
|
||||
- \\(h = 5 - 10\ W/m^2/K\\) for free convection with air
|
||||
- \\(h = 500 - 5000\ W/m^2/K\\) for forced water cooling in a tube of 5mm diameter
|
||||
- \\(A\\) the surface area in \\([m^2]\\)
|
||||
- \\(T\_0\\) the temperature of the object in \\([K]\\)
|
||||
- \\(T\_f\\) the temperature of the convecting fluid in \\([K]\\)
|
||||
|
||||
Note that clean-room air flow should be considered as forced convection.
|
||||
Note that clean-room air flow should be considered as forced convection, and \\(h \approx 10 W/m^2/K\\).
|
||||
|
||||
|
||||
## Radiation {#radiation}
|
||||
|
||||
_Radiation_ corresponds to the heat transfer \\(P\\) (in watt) through the emission of electromagnetic waves from the emitter to its surroundings is:
|
||||
\\[ P = \epsilon \cdot \sigma \cdot A \cdot (T\_r^4 - T\_s^4) \\]
|
||||
_Radiation_ corresponds to the heat transfer \\(Q\\) (in watt) through the emission of electromagnetic waves from the emitter to its surroundings.
|
||||
|
||||
In the general case, we have:
|
||||
\\[ Q = \epsilon \cdot \sigma \cdot A \cdot (T\_r^4 - T\_s^4) \\]
|
||||
with:
|
||||
|
||||
- \\(\epsilon\\) the emissivity which corresponds to the ability of a surface to emit energy through radiation relative to a black body surface at equal temperature.
|
||||
It is between 0 (no emissivity) and 1 (maximum emissivity)
|
||||
- \\(\sigma\\) the Stefan-Boltzmann constant: \\(\sigma = 5.67 \cdot 10^{-8} \\, \frac{W}{m^2 K^4}\\)
|
||||
- \\(A\\) the surface in \\([m^2]\\)
|
||||
- \\(T\_r\\) the temperature of the emitter in \\([K]\\)
|
||||
- \\(T\_s\\) the temperature of the surrounding in \\([K]\\)
|
||||
|
||||
In order to use the lumped mass approximation, the equations can be linearized to obtain:
|
||||
|
||||
\begin{equation}
|
||||
R\_{th} = \frac{1}{h\_{rad} A}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(h\_{rad}\\) the effective heat transfer coefficient for radiation in \\(W/m^2 \cdot K\\)
|
||||
- \\(A\\) the surface in \\([m^2]\\)
|
||||
|
||||
|
||||
### Practical Cases {#practical-cases}
|
||||
|
||||
Two parallel plates:
|
||||
|
||||
\begin{equation}
|
||||
h\_{rad} = \frac{\sigma}{1/\epsilon\_1 + 1/\epsilon\_2 - 1} (T\_1^2 + T\_2^2)(T\_1 + T\_2)
|
||||
\end{equation}
|
||||
|
||||
Two concentric cylinders:
|
||||
|
||||
\begin{equation}
|
||||
h\_{rad} = \frac{\sigma}{1/\epsilon\_1 + r\_1/r\_2 (1/\epsilon\_2 - 1)} (T\_1^2 + T\_2^2)(T\_1 + T\_2)
|
||||
\end{equation}
|
||||
|
||||
A small object enclosed in a large volume:
|
||||
|
||||
\begin{equation}
|
||||
h\_{rad} = \epsilon\_1 \sigma (T\_1^2 + T\_2^2)(T\_1 + T\_2)
|
||||
\end{equation}
|
||||
|
||||
|
||||
### Emissivity {#emissivity}
|
||||
|
||||
The emissivity of materials highly depend on the surface finish (the more polished, the lower the emissivity).
|
||||
Some examples are given in <tab:emissivity_examples>.
|
||||
|
||||
Gold coating gives also a very low emissivity and is typically used in cryogenic applications.
|
||||
|
||||
<a id="table--tab:emissivity-examples"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:emissivity-examples">Table 1</a>:</span>
|
||||
@@ -114,6 +169,35 @@ The required heat is then:
|
||||
| Water at 25 degrees | 4182 |
|
||||
|
||||
|
||||
## Heat Transport (i.e. Water cooling) {#heat-transport--i-dot-e-dot-water-cooling}
|
||||
|
||||
<a id="figure--fig:heat-transfer-fluid"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/heat_transfer_fluid.png" caption="<span class=\"figure-number\">Figure 1: </span>Heat transfered to the fluid" >}}
|
||||
|
||||
\begin{equation}
|
||||
Q\_{in} = h \cdot A \cdot (T\_{wall} - T\_{mean})
|
||||
\end{equation}
|
||||
|
||||
<a id="figure--fig:heat-transport"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/heat_transport.png" caption="<span class=\"figure-number\">Figure 2: </span>Heat Transport in the fluid" >}}
|
||||
|
||||
\begin{equation}
|
||||
Q\_{out} = \phi \rho c\_p (T\_{mean,in} - T\_{mean,out})
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(Q\_{out}\\) the transported heat in W
|
||||
- \\(\phi\\) the flow in \\(m^3/s\\)
|
||||
- \\(\rho\\) the fluid density in \\(kg/m^3\\)
|
||||
- \\(c\_p\\) the specific heat capacity of the fluid in \\(J/(kg \cdot K)\\)
|
||||
- \\(T\_{mean}\\) the mean incoming and outgoing fluid temperature
|
||||
|
||||
Because of energy balance, we have in the stationary condition: \\(Q\_{in} = Q\_{out}\\)
|
||||
|
||||
|
||||
## Heat flow {#heat-flow}
|
||||
|
||||
The heat flow \\(P\\) (in watt) is the derivative of the heat:
|
||||
|
@@ -10,29 +10,13 @@ Tags
|
||||
|
||||
## Temperature sensors types {#temperature-sensors-types}
|
||||
|
||||
There are three main types of temperature sensors:
|
||||
There are mainly three main types of temperature sensors:
|
||||
|
||||
- [Thermocouples](#org-target--sec-temperature-sensor-thermocouple) with are based on the Seebeck effect
|
||||
- [RTD](#org-target--sec-temperature-sensor-rtd) (Resistance Temperature Detectors): made of pure metals (Pt, Ni or Cu)
|
||||
They are all PTC (Positive Temperature Coefficient): PT100, PT1000, Ni100, Ni1000, ...
|
||||
- [Thermistor](#org-target--sec-temperature-sensor-thermistor): made of metal oxide mixtures (semiconductor materials).
|
||||
It can have a NTC (Negative Temperature Coefficient) or a PTC (Positive Temperature Coefficient).
|
||||
- [Thermocouple](#org-target--sec-temperature-sensor-thermocouple) (Seebeck effect):
|
||||
- Type K (-180 to 1200 degC)
|
||||
- Type T (-250 to 350 degC)
|
||||
|
||||
|
||||
### RTD {#rtd}
|
||||
|
||||
<span class="org-target" id="org-target--sec-temperature-sensor-rtd"></span>
|
||||
|
||||
Sensitivity of PT100 is typically around 0.004 Ohm/Ohm/deg.
|
||||
|
||||
|
||||
### Thermistor {#thermistor}
|
||||
|
||||
<span class="org-target" id="org-target--sec-temperature-sensor-thermistor"></span>
|
||||
|
||||
Sensitivity of NTC is typically around -0.05 Ohm/Ohm/deg.
|
||||
They typically have a NTC (Negative Temperature Coefficient).
|
||||
|
||||
|
||||
### Thermocouple {#thermocouple}
|
||||
@@ -40,17 +24,134 @@ Sensitivity of NTC is typically around -0.05 Ohm/Ohm/deg.
|
||||
<span class="org-target" id="org-target--sec-temperature-sensor-thermocouple"></span>
|
||||
|
||||
|
||||
#### Working Principle {#working-principle}
|
||||
|
||||
Based on Seebeck effect: in a conductor, a temperature difference \\(\Delta T\\) creates an electric field \\(V\\) defined by the Seebeck coefficient \\(\epsilon\\).
|
||||
|
||||
Consider a material with a Seebeck coefficient \\(\epsilon\_A\\), the voltage difference at its send is:
|
||||
|
||||
\begin{equation}
|
||||
V\_A = \int\_{T\_1}^{T\_2} \epsilon\_A dT = \epsilon\_A (T\_2 - T\_1)
|
||||
\end{equation}
|
||||
|
||||
<a id="figure--fig:temperature-seebeck-material-A"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_seebeck_material_A.png" caption="<span class=\"figure-number\">Figure 1: </span>Seebeck effect in a material" >}}
|
||||
|
||||
Now if two materials are "chained", the overall voltage will be:
|
||||
|
||||
\begin{equation}
|
||||
V = (\epsilon\_{A} - \epsilon\_{B})(T\_{2} - T\_{1})
|
||||
\end{equation}
|
||||
|
||||
<a id="figure--fig:temperature-thermocouple-two-materiasl"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_thermocouple_two_materiasl.png" caption="<span class=\"figure-number\">Figure 2: </span>Combination of two materials" >}}
|
||||
|
||||
Several materials can be combined:
|
||||
|
||||
<a id="figure--fig:temperature-termocouples-sensitivities"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_termocouples_sensitivities.png" caption="<span class=\"figure-number\">Figure 3: </span>Some types of thermocouples and associated sensitivities" >}}
|
||||
|
||||
|
||||
#### Measurement of the temperature {#measurement-of-the-temperature}
|
||||
|
||||
The output voltage of a thermocouple is given by \\(\Delta T\\) (between \\(T\_1\\), the temperature at the measured voltage side, and \\(T\_2\\) at the thermocouple side).
|
||||
Therefore, typically \\(T\_1\\) is measured with an RTD (typically what is done inside the Agilent 34970A) and \\(T\_2\\) is therefore estimated from \\(T\_1\\) and \\(\Delta T\\).
|
||||
|
||||
<a id="figure--fig:temperature-thermocouple-meas"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_thermocouple_meas.png" caption="<span class=\"figure-number\">Figure 4: </span>Thermocouple measured voltage" >}}
|
||||
|
||||
|
||||
#### Choice of Thermocouple {#choice-of-thermocouple}
|
||||
|
||||
- J - Iron / Constantan
|
||||
- \\(55\ \mu V / K\\)
|
||||
- Easy to solder
|
||||
- Can act as galvanic element
|
||||
- K - Chromel / Alumel
|
||||
- \\(40\ \mu V / K\\), almost linear
|
||||
- Difficult to solver, welding is better
|
||||
- Low thermal conductivity of wires
|
||||
- T - Copper / Constantan
|
||||
- \\(40\ \mu V / K\\)
|
||||
- Easy to solder
|
||||
- High thermal conductivity is source of errors
|
||||
|
||||
|
||||
#### Summary {#summary}
|
||||
|
||||
Advantages:
|
||||
|
||||
- Simple to use
|
||||
- Standard acquisition systems
|
||||
- Small (thin wires down to 0.08mm)
|
||||
- Fast response
|
||||
- Suitable for high and low temperatures
|
||||
- Can be used in vacuum systems
|
||||
- No self heating
|
||||
|
||||
Disadvantages:
|
||||
|
||||
- Relative expensive
|
||||
- Uncertainty about 0.1K, not feasible to reach mK
|
||||
|
||||
|
||||
### RTD {#rtd}
|
||||
|
||||
<span class="org-target" id="org-target--sec-temperature-sensor-rtd"></span>
|
||||
|
||||
Sensitivity of PT100 is typically around .
|
||||
|
||||
Advantages:
|
||||
|
||||
- Very high stability (better than 1mK per year)
|
||||
- Very high linearity (0.1% over -40 to 125 degrees)
|
||||
- This makes them very useful as calibration reference sensor, which is linked to the international standard
|
||||
|
||||
Disadvantages:
|
||||
|
||||
- Expensive
|
||||
- Low sensitivity (typically 0.004 Ohm/Ohm/deg)
|
||||
- The measurement is sensitivity to lead wire resistance, but four-wire technique may be used
|
||||
- Self heating due to electrical dissipation.
|
||||
Typically, for a Pt100, \\(P = 0.1 mW\\) (the source voltage is typically 0.1 V)
|
||||
This corresponds to approximately 0.1 degree of self heating in "still" air
|
||||
|
||||
|
||||
### Thermistor {#thermistor}
|
||||
|
||||
<span class="org-target" id="org-target--sec-temperature-sensor-thermistor"></span>
|
||||
|
||||
Sensitivity of NTC is .
|
||||
|
||||
Advantages:
|
||||
|
||||
- Highest sensitivity (typically around -0.05 Ohm/Ohm/deg)
|
||||
- Because the resistance is typically high (100k Ohm), no Four wire configuration is necessary, and long wires may be used
|
||||
- Lower heat dissipation than Pt100
|
||||
- Very high stability, especially for glass encapsulated
|
||||
- Very small, and available in all kinds of shapes
|
||||
|
||||
Disadvantages:
|
||||
|
||||
- Non-linear, so compensation is necessary (but not really an issue with software compensation)
|
||||
- Self-heating if mK accuracy is wanted
|
||||
- Cover is necessary for use in vacuum
|
||||
|
||||
|
||||
### Comparison of sensor types {#comparison-of-sensor-types}
|
||||
|
||||
<https://www.ni.com/fr/shop/data-acquisition/sensor-fundamentals/measuring-temperature-with-thermocouples-rtds-and-thermistors.html?srsltid=AfmBOoqrR2VCWVvkCTjzTIYHlyiKVpt6Ket1xfhU1yFPTtXsGKg0RILE>
|
||||
|
||||
| | RTD | Thermistor | Thermocouple |
|
||||
|---------------|------|------------|--------------|
|
||||
| Accuracy | Good | Non-Linear | |
|
||||
| Stability | | | |
|
||||
| Sensitivity | Bad | Good | |
|
||||
| Response time | | | |
|
||||
| Self heating | | | |
|
||||
| | RTD | Thermistor | Thermocouple | |
|
||||
|---------------|-------------------------|------------|--------------|---|
|
||||
| Accuracy | Good | Non-Linear | | A |
|
||||
| Linearity | 0.1% over -40..125 degC | | | |
|
||||
| Stability | better than 1mK/year | | | |
|
||||
| Sensitivity | 0.4%/K | 5%/K | 50uV/K | |
|
||||
| Response time | | | | |
|
||||
| Self heating | | | None | |
|
||||
|
||||
|
||||
## Accuracy of Temperature measurement {#accuracy-of-temperature-measurement}
|
||||
@@ -73,7 +174,7 @@ For a Pt100 at \\(0^oC\\), this corresponds to an accuracy of \\(< \pm 0.04\\,K\
|
||||
#### 2, 3 and 4 wires sensors {#2-3-and-4-wires-sensors}
|
||||
|
||||
The measured resistance is the sum of the resistance of the sensitive element and the resistance of the wires.
|
||||
This corresponds to the 2-wire measurement ([Figure 1](#figure--fig:temperature-sensor-rtd-2-wires)).
|
||||
This corresponds to the 2-wire measurement ([Figure 5](#figure--fig:temperature-sensor-rtd-2-wires)).
|
||||
|
||||
The errors associated with this effect are large when the resistance of the sensitive element is small and then the resistance of all cables and connectors are large.
|
||||
For instance, the effect of contact/wire resistance less important for the PT1000 than for the PT100.
|
||||
@@ -81,18 +182,27 @@ The use of 2 wire PT1000 is possible (whereas for PT100, 4 wire is more accurate
|
||||
|
||||
<a id="figure--fig:temperature-sensor-rtd-2-wires"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_2_wires.png" caption="<span class=\"figure-number\">Figure 1: </span>2-wire measurement" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_2_wires.png" caption="<span class=\"figure-number\">Figure 5: </span>2-wire measurement" >}}
|
||||
|
||||
The effect of the resistance of the wires (cables, connectors, etc..) can be mitigated by using the 4-wire configuration ([Figure 2](#figure--fig:temperature-sensor-rtd-4-wires)).
|
||||
The effect of the resistance of the wires (cables, connectors, etc..) can be mitigated by using the 4-wire configuration ([Figure 6](#figure--fig:temperature-sensor-rtd-4-wires)).
|
||||
|
||||
<a id="figure--fig:temperature-sensor-rtd-4-wires"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_4_wires.png" caption="<span class=\"figure-number\">Figure 2: </span>4-wire measurement" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_4_wires.png" caption="<span class=\"figure-number\">Figure 6: </span>4-wire measurement" >}}
|
||||
|
||||
|
||||
### Temperature {#temperature}
|
||||
|
||||
|
||||
#### Effect of conductivity through the wires {#effect-of-conductivity-through-the-wires}
|
||||
|
||||
It is better to use thin wires, of the fix the wires to the part that is to be measured.
|
||||
|
||||
<a id="figure--fig:temperature-effect-wires"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_effect_wires.png" caption="<span class=\"figure-number\">Figure 7: </span>Measured effect of wires. When in \"air\", it conducts the heat from the air to the sensor which can lead to measurement errors." >}}
|
||||
|
||||
|
||||
#### Thermal contact and response time {#thermal-contact-and-response-time}
|
||||
|
||||
The measured temperature is the temperature of the sensitive element.
|
||||
@@ -100,6 +210,10 @@ It may not be equal to the temperature of the element on which the sensor is fix
|
||||
|
||||
It depends on the thermal contact and the response time in play.
|
||||
|
||||
The sensor contact may be improved by using "soft" (i.e. plastically deformable) metals at the contact interface such as indium.
|
||||
|
||||
However, it seems that having too much pressure in the sensor may induce stress in the NTC that can induce measurement errors.
|
||||
|
||||
|
||||
#### Self heating effect {#self-heating-effect}
|
||||
|
||||
@@ -113,12 +227,14 @@ Typically, a constant voltage is applied, such that the generated current is low
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
The applied voltage is typically in the order of 1V.
|
||||
For a Pt100 (\\(R \approx 100\\,\Omega\\)), this would lead a heat generation of \\(P \approx 10\\,mW\\).
|
||||
For a NTC with \\(R\approx 10\\,k\Omega\\), the heat generation will me much lower \\(P\approx 100\\,\mu W\\).
|
||||
The applied voltage is typically in the order of 0.1V to 1V.
|
||||
For a Pt100 (\\(R \approx 100\\,\Omega\\)), this would lead a heat generation of \\(P \approx 1 \text{ to } 10\\,mW\\).
|
||||
For a NTC with \\(R\approx 10\\,k\Omega\\), the heat generation will me much lower \\(P\approx 10 \text{ to } 100\\,\mu W\\).
|
||||
|
||||
</div>
|
||||
|
||||
In order to lower the self heating effect, _intermitted_ currents may be used as is the case with the Agilent 34970A.
|
||||
|
||||
|
||||
### Converting Resistance to Temperature {#converting-resistance-to-temperature}
|
||||
|
||||
@@ -150,26 +266,26 @@ Manufacturers usually provides a lookup table that links the resistance and the
|
||||
|
||||
### PT100 {#pt100}
|
||||
|
||||
A PT100 resistance is quite linear with respect to the temperature as shown in [Figure 3](#figure--fig:temperature-sensor-pt100-resistance).
|
||||
A PT100 resistance is quite linear with respect to the temperature as shown in [Figure 8](#figure--fig:temperature-sensor-pt100-resistance).
|
||||
|
||||
<a id="figure--fig:temperature-sensor-pt100-resistance"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_pt100_resistance.png" caption="<span class=\"figure-number\">Figure 3: </span>Resistance of a PT100 as a function of the temperature" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_pt100_resistance.png" caption="<span class=\"figure-number\">Figure 8: </span>Resistance of a PT100 as a function of the temperature" >}}
|
||||
|
||||
The coefficient of resistance \\(\alpha\\) is defined as the ratio of the rate of change of resistance with temperature to the resistance of the thermistor at a specified temperature:
|
||||
\\[ \alpha(T) = \frac{1}{R(T)}\frac{dR(T)}{dT} \\]
|
||||
|
||||
For a PT100, it is displayed in [Figure 4](#figure--fig:temperature-sensor-pt100-sensitivity).
|
||||
For a PT100, it is displayed in [Figure 9](#figure--fig:temperature-sensor-pt100-sensitivity).
|
||||
At \\(0^oC\\), \\(\alpha(0^oC) \approx 0.004\\,\Omega/\Omega/{}^oC\\).
|
||||
|
||||
<a id="figure--fig:temperature-sensor-pt100-sensitivity"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_pt100_sensitivity.png" caption="<span class=\"figure-number\">Figure 4: </span>Sensitivity of a PT100 as a function of the temperature" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_pt100_sensitivity.png" caption="<span class=\"figure-number\">Figure 9: </span>Sensitivity of a PT100 as a function of the temperature" >}}
|
||||
|
||||
|
||||
### NTC {#ntc}
|
||||
|
||||
A NTC is much more non-linear than a PT100 as shown in [Figure 5](#figure--fig:temperature-sensor-rtd-resistance).
|
||||
A NTC is much more non-linear than a PT100 as shown in [Figure 10](#figure--fig:temperature-sensor-rtd-resistance).
|
||||
|
||||
The NTC used here is "Type F" from Amphenol Thermometrics.
|
||||
|
||||
@@ -180,13 +296,13 @@ R_rtd = 1e4*[68.60 48.16 34.23 24.62 17.91 13.17 9.782 7.339 5.558 4.247 3.274 2
|
||||
|
||||
<a id="figure--fig:temperature-sensor-rtd-resistance"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_resistance.png" caption="<span class=\"figure-number\">Figure 5: </span>Resistance of a RTD as a function of the temperature" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_resistance.png" caption="<span class=\"figure-number\">Figure 10: </span>Resistance of a RTD as a function of the temperature" >}}
|
||||
|
||||
The huge advantage of RTD compared to PT100 is that the sensitivity is much larger than Pt100 as shown in [Figure 6](#figure--fig:temperature-sensor-rtd-sensitivity).
|
||||
The huge advantage of RTD compared to PT100 is that the sensitivity is much larger than Pt100 as shown in [Figure 11](#figure--fig:temperature-sensor-rtd-sensitivity).
|
||||
|
||||
<a id="figure--fig:temperature-sensor-rtd-sensitivity"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_sensitivity.png" caption="<span class=\"figure-number\">Figure 6: </span>Sensitivity of a RTD as a function of the temperature" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_rtd_sensitivity.png" caption="<span class=\"figure-number\">Figure 11: </span>Sensitivity of a RTD as a function of the temperature" >}}
|
||||
|
||||
|
||||
## Compute temperature from the measured resistance {#compute-temperature-from-the-measured-resistance}
|
||||
@@ -233,7 +349,7 @@ R = [R0*(1 + A*T1 + B*T1.^2 + C*(T1-100).*T1.^3), R0*(1 + A*T2 + B*T2.^2)]; % [O
|
||||
|
||||
<a id="figure--fig:temperature-sensor-pt100-curve"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_pt100_curve.png" caption="<span class=\"figure-number\">Figure 7: </span>Resistance as a function of the temperature for a Pt100" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_pt100_curve.png" caption="<span class=\"figure-number\">Figure 12: </span>Resistance as a function of the temperature for a Pt100" >}}
|
||||
|
||||
For temperatures above 0 degrees, the temperature \\(T\\) can be easily computed from the measured resistance \\(R\\) using:
|
||||
\\[ T = \frac{-A + \sqrt{A^2 - 4 B ( 1 - R/R\_0 )}}{2 B} \\]
|
||||
@@ -245,7 +361,7 @@ Let's compare the temperature given by a Loopup table and the temperature given
|
||||
- linear interpolation with one point every degree
|
||||
- cubic interpolation with one point every 10 degrees
|
||||
|
||||
The error is less than 0.1mK over the full range, validating the use of a lookup table to convert the resistance to temperature ([Figure 9](#figure--fig:temperature-sensor-lut-errors)).
|
||||
The error is less than 0.1mK over the full range, validating the use of a lookup table to convert the resistance to temperature ([Figure 14](#figure--fig:temperature-sensor-lut-errors)).
|
||||
|
||||
|
||||
### NTC thermistor {#ntc-thermistor}
|
||||
@@ -288,7 +404,7 @@ T = -273.15+[T1,T2,T3,T4]; % [degC]
|
||||
|
||||
<a id="figure--fig:temperature-sensor-ntc-curve"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_ntc_curve.png" caption="<span class=\"figure-number\">Figure 8: </span>Resistance as a function of the temperature for a given NTC" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_ntc_curve.png" caption="<span class=\"figure-number\">Figure 13: </span>Resistance as a function of the temperature for a given NTC" >}}
|
||||
|
||||
To calculate the actual thermistor temperature as a function of the measured thermistor resistance, use the following equation:
|
||||
\\[ T = \frac{1}{a + b \ln(R\_t/R\_{25}) + c (Ln Rt/R25)^2 + d (Ln Rt/R25)^3) \\]
|
||||
@@ -309,7 +425,7 @@ To calculate the actual thermistor temperature as a function of the measured the
|
||||
|
||||
### Approximation of formulas using lookup tables {#approximation-of-formulas-using-lookup-tables}
|
||||
|
||||
First, let's compare the analytical formula with a LUT for a Pt100 ([Figure 9](#figure--fig:temperature-sensor-lut-errors)).
|
||||
First, let's compare the analytical formula with a LUT for a Pt100 ([Figure 14](#figure--fig:temperature-sensor-lut-errors)).
|
||||
The error (accuracy) is bellow 0.1mK for relatively small LUT.
|
||||
|
||||
```matlab
|
||||
@@ -349,10 +465,10 @@ T_meas_makima = interp1(R_lut_makima,T_lut_makima,R_true,interp_method); % inter
|
||||
|
||||
<a id="figure--fig:temperature-sensor-lut-errors"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_lut_errors.png" caption="<span class=\"figure-number\">Figure 9: </span>Interpolation errors in two cases when using a LUT for a Pt100" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_lut_errors.png" caption="<span class=\"figure-number\">Figure 14: </span>Interpolation errors in two cases when using a LUT for a Pt100" >}}
|
||||
|
||||
NTC thermistors are more non-linear and therefore require finer LUT to have low accuracy errors.
|
||||
In order to have less than 0.1mK of accuracy, a LUT with linear interpolation requires approximately one point every 0.1 degree ([Figure 10](#figure--fig:temperature-sensor-lut-errors-ntc)).
|
||||
In order to have less than 0.1mK of accuracy, a LUT with linear interpolation requires approximately one point every 0.1 degree ([Figure 15](#figure--fig:temperature-sensor-lut-errors-ntc)).
|
||||
|
||||
```matlab
|
||||
%% "Perfect" temperature and resistance of NTC (DC95F202VN)
|
||||
@@ -406,7 +522,7 @@ T_meas_makima = interp1(R_lut_makima,T_lut_makima,R_true,interp_method); % inter
|
||||
|
||||
<a id="figure--fig:temperature-sensor-lut-errors-ntc"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_sensor_lut_errors_ntc.png" caption="<span class=\"figure-number\">Figure 10: </span>Interpolation errors in two cases when using a LUT for a NTC" >}}
|
||||
{{< figure src="/ox-hugo/temperature_sensor_lut_errors_ntc.png" caption="<span class=\"figure-number\">Figure 15: </span>Interpolation errors in two cases when using a LUT for a NTC" >}}
|
||||
|
||||
|
||||
## Commercial Temperature Sensors {#commercial-temperature-sensors}
|
||||
@@ -438,10 +554,28 @@ From (<a href="#citeproc_bib_item_2">Neto et al. 2022</a>)
|
||||
> Furthermore, the thin platinum wire of the 10 kΩ RTDs presented bad solderability and its assembly process was too laborious, resulting in unreliable mechanical bonds and a failure rate beyond acceptable for a robust beamline instrumentation.
|
||||
> The alternative was to use **2 kΩ IST RTDs (P2K0.232.3FW.B.007)** with custom-made flat gold-platted terminals, resulting in a full range sensor with better solderability and temperature **resolution below 0.4 mK** over the entire measurable range
|
||||
|
||||
**NTC, Amphenol DC95F**, measured with an Agilent 34970A at 10K:
|
||||
|
||||
- leads to 0.2mK resolution (22 bits)
|
||||
- High interchangeability: offset of 0.01K and sensitivity of 3mK/K
|
||||
|
||||
<a id="figure--fig:temperature-ntc-dc95f-results"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_ntc_dc95f_results.png" caption="<span class=\"figure-number\">Figure 16: </span>6 (un-calibrated) DC95F sensors fixed to the same mass with homogeneous temperature" >}}
|
||||
|
||||
**NTC, Betatherm 10K3A1**, measured at 10K:
|
||||
|
||||
- Resolution of 0.2mK
|
||||
- Low noise and high repeatability
|
||||
|
||||
<a id="figure--fig:temperature-betatherm-10K3A1-results"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/temperature_betatherm_10K3A1_results.png" caption="<span class=\"figure-number\">Figure 17: </span>Measured temperature of two BetaTherm 10K3A1 compared to a reference sensor, at 10K" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ebrahimi-Darkhaneh, Hadi. 2019. “Measurement Error Caused by Self-Heating in Ntc and Ptc Thermistors.” <i>Tex. Instrum. Analog. Des. J. Q</i> 3: 001–7.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Neto, Joao Brito, Renan Geraldes, Francesco Lena, Marcelo Moraes, Antonio Piccino Neto, Marlon Saveri Silva, and Lucas Volpe. 2022. “Temperature Control for Beamline Precision Systems of Sirius/Lnls.” <i>Proceedings of the 18th International Conference on Accelerator and Large Experimental Physics Control Systems</i> ICALEPCS2021 (nil): China. doi:<a href="https://doi.org/10.18429/JACOW-ICALEPCS2021-WEPV001">10.18429/JACOW-ICALEPCS2021-WEPV001</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Neto, Joao Brito, Renan Geraldes, Francesco Lena, Marcelo Moraes, Antonio Piccino Neto, Marlon Saveri Silva, and Lucas Volpe. 2022. “Temperature Control for Beamline Precision Systems of Sirius/Lnls.” <i>Proceedings of the 18th International Conference on Accelerator and Large Experimental Physics Control Systems</i> ICALEPCS2021: China. doi:<a href="https://doi.org/10.18429/JACOW-ICALEPCS2021-WEPV001">10.18429/JACOW-ICALEPCS2021-WEPV001</a>.</div>
|
||||
</div>
|
||||
|
Reference in New Issue
Block a user