Update Content - 2025-01-13
This commit is contained in:
parent
970b6679f5
commit
113065d23b
@ -7,10 +7,40 @@ draft = false
|
|||||||
Tags
|
Tags
|
||||||
: [Temperature Control]({{< relref "temperature_control.md" >}})
|
: [Temperature Control]({{< relref "temperature_control.md" >}})
|
||||||
|
|
||||||
|
|
||||||
|
## First principles {#first-principles}
|
||||||
|
|
||||||
From (<a href="#citeproc_bib_item_1">Evers et al. 2021</a>):
|
From (<a href="#citeproc_bib_item_1">Evers et al. 2021</a>):
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/thermoelectric_cooler_schematic.svg" >}}
|
{{< figure src="/ox-hugo/thermoelectric_cooler_schematic.svg" >}}
|
||||||
|
|
||||||
|
The thermoelectric dynamics is described by 3 phenomena:
|
||||||
|
|
||||||
|
1. the Fourier effect
|
||||||
|
2. Joule heating
|
||||||
|
3. the Peltier effect
|
||||||
|
|
||||||
|
|
||||||
|
### The Fourier effect {#the-fourier-effect}
|
||||||
|
|
||||||
|
The Fourier effect \\(Q\_f\\) describes the energy transfer through **conduction** between the two sides of the Peltier module:
|
||||||
|
\\[ Q\_f^{1 \righarrow 2} = \frac{K\_m \cdot A}{d} (T\_1 - T\_2) \\]
|
||||||
|
for conduction from temperature \\(T\_1\\) to \\(T\_2\\) with \\(K\_m\\) the conductivity of the Peltier module in \\(W/m \cdot K\\), \\(A\\) the area in \\(m^2\\) and \\(d\\) the thickness in \\(m\\).
|
||||||
|
|
||||||
|
|
||||||
|
### Joule heating {#joule-heating}
|
||||||
|
|
||||||
|
Joule heating \\(Q\_j\\) occurs when an electrical current flows through a resistive element:
|
||||||
|
\\[ Q\_j = R\_m I^2 \\]
|
||||||
|
where \\(R\_m\\) is the electrical resistance in \\(\Omega\\) of the Peltier module and \\(I\\) is the electrical current in \\(A\\).
|
||||||
|
|
||||||
|
|
||||||
|
### The Peltier effect {#the-peltier-effect}
|
||||||
|
|
||||||
|
The Peltier effect describes the occurrence of a heat flow over a semi-conductor in the presence of an electrical potential difference and resulting current:
|
||||||
|
\\[ Q\_p = S\_m T I \\]
|
||||||
|
where \\(S\_m\\) is the Seebeck coefficient of the Peltier module, and \\(T\\) is the temperature at the cold/hot side.
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user