{{<figuresrc="/ox-hugo/tuned_mass_damper_schematic.png"caption="<span class=\"figure-number\">Figure 1: </span>Mass Spring Damper representation of the Primary System and the Tuned Mass Damper">}}
The parameter of the primary system are defined as follow:
```matlab
%% Primary system parameters
m1 = 100; % Mass [kg]
k1 = 1e7; % Stiffness [N/m]
c1 = 300; % Damping [N/(m/s)]
```
Then, the mass of the TMD is fixed and its optical parameters are computed:
{{<figuresrc="/ox-hugo/tuned_mass_damper_effect_tmd.png"caption="<span class=\"figure-number\">Figure 2: </span>Comparison of the transmissibility with and without the TMD">}}
Let's now see how the mass of the TMD can affect its efficiency.
{{<figuresrc="/ox-hugo/tuned_mass_damper_mass_effect.png"caption="<span class=\"figure-number\">Figure 3: </span>Effect of the TMD mass on its efficiency">}}
The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [4](#figure--fig:tuned-mass-damper-effect-mass-ratio).
This relation can help to determine the minimum mass of the TMD that will give acceptable results.
{{<figuresrc="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png"caption="<span class=\"figure-number\">Figure 4: </span>Maximum amplification due to resonance as a function of the mass ratio">}}
<divclass="csl-entry"><aid="citeproc_bib_item_1"></a>Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” <i>Annual Reviews in Control</i> 44 (nil): 129–56. doi:<ahref="https://doi.org/10.1016/j.arcontrol.2017.09.015">10.1016/j.arcontrol.2017.09.015</a>.</div>