## Description of the Cubic Architecture {#description-of-the-cubic-architecture}
## Special Properties {#special-properties}
Cubic Stewart Platforms can be decoupled provided that (from <supid="ba05ff213f8e5963d91559d95becfbdb"><ahref="#chen00_ident_decoup_contr_flexur_joint_hexap"title="YixinChen \&McInroy,IdentificationandDecouplingControlofFlexureJointedHexapods,nil,inin:{Proceedings2000ICRA.MillenniumConference.IEEE
International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065)}, edited by (2000)">(Yixin Chen \& McInroy, 2000)</a></sup>)
> 1. The payload mass-inertia matrix is diagonal
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
# Bibliography
<aid="chen00_ident_decoup_contr_flexur_joint_hexap"></a>Chen, Y., & McInroy, J., *Identification and decoupling control of flexure jointed hexapods*, In , Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (pp. ) (2000). : . [↩](#ba05ff213f8e5963d91559d95becfbdb)
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})