digital-brain/content/article/spanos95_soft_activ_vibrat_isolat.md

67 lines
2.7 KiB
Markdown
Raw Normal View History

2020-04-20 18:58:10 +02:00
+++
title = "A soft 6-axis active vibration isolator"
2022-03-15 16:40:48 +01:00
author = ["Dehaeze Thomas"]
2020-04-20 18:58:10 +02:00
draft = false
+++
Tags
2022-03-15 16:40:48 +01:00
: [Stewart Platforms]({{< relref "stewart_platforms.md" >}}), [Vibration Isolation]({{< relref "vibration_isolation.md" >}})
2020-04-20 18:58:10 +02:00
Reference
2022-03-15 16:40:48 +01:00
: (<a href="#citeproc_bib_item_1">Spanos, Rahman, and Blackwood 1995</a>)
2020-04-20 18:58:10 +02:00
Author(s)
2022-03-15 16:40:48 +01:00
: Spanos, J., Rahman, Z., &amp; Blackwood, G.
2020-04-20 18:58:10 +02:00
Year
: 1995
2022-03-15 16:40:48 +01:00
**Stewart Platform** (Figure [1](#figure--fig:spanos95-stewart-platform)):
2020-04-20 18:58:10 +02:00
- Voice Coil
- Flexible joints (cross-blades)
- Force Sensors
- Cubic Configuration
2022-03-15 16:40:48 +01:00
<a id="figure--fig:spanos95-stewart-platform"></a>
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
{{< figure src="/ox-hugo/spanos95_stewart_platform.png" caption="<span class=\"figure-number\">Figure 1: </span>Stewart Platform" >}}
2020-04-20 18:58:10 +02:00
Total mass of the paylaod: 30kg
Center of gravity is 9cm above the geometry center of the mount (cube's center?).
Limitation of the **Decentralized Force Feedback**:
- high frequency pole due to internal resonances of the struts
- low frequency zero due to the rotational stiffness of the flexible joints
After redesign of the struts:
- high frequency pole at 4.7kHz
- low frequency zero at 2.6Hz but non-minimum phase (not explained).
Small viscous damping material in the cross blade flexures made the zero minimum phase again.
2022-03-15 16:40:48 +01:00
<a id="figure--fig:spanos95-iff-plant"></a>
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
{{< figure src="/ox-hugo/spanos95_iff_plant.png" caption="<span class=\"figure-number\">Figure 2: </span>Experimentally measured transfer function from voice coil drive voltage to collocated load cell output voltage" >}}
2020-04-20 18:58:10 +02:00
The controller used consisted of:
- second order low pass filter to gain stabilize the plant at high frequencies and provide steep roll-off
- first order lead filter to provide adequate phase margin at the high frequency crossover
- first order lag filter to provide adequate phase margin at the low frequency crossover
- a first order high pass filter to attenuate the excess gain resulting from the low frequency zero
2022-03-15 16:40:48 +01:00
The results in terms of transmissibility are shown in Figure [3](#figure--fig:spanos95-results).
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
<a id="figure--fig:spanos95-results"></a>
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
{{< figure src="/ox-hugo/spanos95_results.png" caption="<span class=\"figure-number\">Figure 3: </span>Experimentally measured Frobenius norm of the 6-axis transmissibility" >}}
2021-05-02 22:18:30 +02:00
## Bibliography {#bibliography}
2022-03-15 16:40:48 +01:00
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In <i>Proceedings of 1995 American Control Conference - Acc95</i>, nil. doi:<a href="https://doi.org/10.1109/acc.1995.529280">10.1109/acc.1995.529280</a>.</div>
</div>