2020-04-20 18:58:10 +02:00
+++
title = "A soft 6-axis active vibration isolator"
2022-03-15 16:40:48 +01:00
author = ["Dehaeze Thomas"]
2020-04-20 18:58:10 +02:00
draft = false
+++
Tags
2022-03-15 16:40:48 +01:00
: [Stewart Platforms ]({{< relref "stewart_platforms.md" >}} ), [Vibration Isolation ]({{< relref "vibration_isolation.md" >}} )
2020-04-20 18:58:10 +02:00
Reference
2022-03-15 16:40:48 +01:00
: (< a href = "#citeproc_bib_item_1" > Spanos, Rahman, and Blackwood 1995< / a > )
2020-04-20 18:58:10 +02:00
Author(s)
2022-03-15 16:40:48 +01:00
: Spanos, J., Rahman, Z., & Blackwood, G.
2020-04-20 18:58:10 +02:00
Year
: 1995
2022-03-15 16:40:48 +01:00
**Stewart Platform** (Figure [1 ](#figure--fig:spanos95-stewart-platform )):
2020-04-20 18:58:10 +02:00
- Voice Coil
- Flexible joints (cross-blades)
- Force Sensors
- Cubic Configuration
2022-03-15 16:40:48 +01:00
< a id = "figure--fig:spanos95-stewart-platform" > < / a >
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
{{< figure src = "/ox-hugo/spanos95_stewart_platform.png" caption = "<span class= \"figure-number \">Figure 1: </span>Stewart Platform" > }}
2020-04-20 18:58:10 +02:00
Total mass of the paylaod: 30kg
Center of gravity is 9cm above the geometry center of the mount (cube's center?).
Limitation of the **Decentralized Force Feedback** :
- high frequency pole due to internal resonances of the struts
- low frequency zero due to the rotational stiffness of the flexible joints
After redesign of the struts:
- high frequency pole at 4.7kHz
- low frequency zero at 2.6Hz but non-minimum phase (not explained).
Small viscous damping material in the cross blade flexures made the zero minimum phase again.
2022-03-15 16:40:48 +01:00
< a id = "figure--fig:spanos95-iff-plant" > < / a >
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
{{< figure src = "/ox-hugo/spanos95_iff_plant.png" caption = "<span class= \"figure-number \">Figure 2: </span>Experimentally measured transfer function from voice coil drive voltage to collocated load cell output voltage" > }}
2020-04-20 18:58:10 +02:00
The controller used consisted of:
- second order low pass filter to gain stabilize the plant at high frequencies and provide steep roll-off
- first order lead filter to provide adequate phase margin at the high frequency crossover
- first order lag filter to provide adequate phase margin at the low frequency crossover
- a first order high pass filter to attenuate the excess gain resulting from the low frequency zero
2022-03-15 16:40:48 +01:00
The results in terms of transmissibility are shown in Figure [3 ](#figure--fig:spanos95-results ).
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
< a id = "figure--fig:spanos95-results" > < / a >
2020-04-20 18:58:10 +02:00
2022-03-15 16:40:48 +01:00
{{< figure src = "/ox-hugo/spanos95_results.png" caption = "<span class= \"figure-number \">Figure 3: </span>Experimentally measured Frobenius norm of the 6-axis transmissibility" > }}
2020-08-17 23:00:20 +02:00
2021-05-02 22:18:30 +02:00
2020-08-17 23:00:20 +02:00
## Bibliography {#bibliography}
2022-03-15 16:40:48 +01:00
< style > . csl-entry { text-indent : -1.5 em ; margin-left : 1.5 em ; } < / style > < div class = "csl-bib-body" >
< div class = "csl-entry" > < a id = "citeproc_bib_item_1" > < / a > Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In < i > Proceedings of 1995 American Control Conference - Acc’ 95< / i > , nil. doi:< a href = "https://doi.org/10.1109/acc.1995.529280" > 10.1109/acc.1995.529280< / a > .< / div >
< / div >