## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
From <supid="ba05ff213f8e5963d91559d95becfbdb"><ahref="#chen00_ident_decoup_contr_flexur_joint_hexap"title="YixinChen \&McInroy,IdentificationandDecouplingControlofFlexureJointedHexapods,nil,inin:{Proceedings2000ICRA.MillenniumConference.IEEE
International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065)}, edited by (2000)">(Yixin Chen \& McInroy, 2000)</a></sup>:
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
- [Nanometre-cutting machine using a stewart-platform parallel mechanism]({{< relref "furutani04_nanom_cuttin_machin_using_stewar" >}})
- [Dynamic modeling and experimental analyses of stewart platform with flexible hinges]({{< relref "jiao18_dynam_model_exper_analy_stewar" >}})
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Dynamic modeling of flexure jointed hexapods for control purposes]({{< relref "mcinroy99_dynam" >}})