Decentralized control tries to control multivariable plants by a suitable decomposition into SISO control loops.
If the process has strong coupling or conditioning problems, centralized control may be required.
It however requires the availability of a precise model.
Two approaches can be used to control a coupled system with SISO techniques:
-**decentralized control** tries to divide the plant and design _independent_ controllers for each subsystems.
Two alternative arise:
- neglect the coupling
- carry out a _decoupling_ operation by "canceling" coupling by transforming the system into a diagonal or triangular structure bia a transformation matrix
The Relative Gain Array (RGA) \\(\Lambda(s)\\) is defined as:
\begin{equation}
\Lambda(s) = G(s) \times (G(s)^T)^{-1}
\end{equation}
The RGA is scaling-independent and controller-independent.
These coefficients can be interpreted as the ratio between the open-loop SISO static gain and the gain with "perfect" control on the rest of the loops.
For demanding control specifications, the values of \\(\Lambda\\) car be drawn as a function of frequency.
In this case, at frequencies important for control stability robustness (around the peak of the sensitivity transfer function), if \\(\Lambda(j\omega)\\) approaches the identity matrix, stability problems are avoided in multi-loop control.
In cases when multi-loop control is not effective in reaching the desired specifications, a possible strategy for tackling the MIMO control could be to transform the transfer function matrix into a diagonal dominant one.
To design low-bandwidth loops, insertion of the inverse DC-gain before the loop ensures decoupling at least at steady-state.
If further bandwidth extension is desired, an approximation of \\(G^{-1}\\) valid in low frequencies can be used.
Although at first glance, decoupling seems an appealing idea, there are some drawbacks:
- as decoupling is achieved via the coordination of sensors and actuators to achieve an "apparent" diagonal behavior, the failure of one the actuators may heavily affects all loops.
- a decoupling design (inverse-based controller) may not be desirable for all disturbance-rejection tasks.
- many MIMO non-minimum phase systems, when feedforward decoupled, increase the RHP-zero multiplicity so performance limitations due to its presence are exacerbated.
- decoupling may be very sensitive to modeling errors, specially for ill-conditionned plants
- feedback decoupling needs full state measurements
If sensors are multiplied by \\(U^T\\) and control actions multiplied by \\(V\\), as in Figure [2](#org9e1f260), then the loop, in the transformed variables, is decoupled, so a diagonal controller \\(K\_D\\) can be used.
Usually, the sensor and actuator transformations are obtained using the DC gain, or a real approximation of \\(G(j\omega)\\), where \\(\omega\\) is around the desired closed-loop bandwidth.
{{<figuresrc="/ox-hugo/albertos04_svd_decoupling.png"caption="Figure 2: SVD decoupling: \\(K\_D\\) is a diagonal controller designed for \\(\Sigma\\)">}}
The transformed sensor-actuator pair corresponding to the maximum singular value is the direction with biggest "gain" on the plant, that is, the combination of variables being "easiest to control".
In ill-conditioned plants, the ratio between the biggest and lower singular value is large (for reference, greater than 20).
They are very sensitive to input uncertainty as some "input directions" have much bigger gain than other ones.
SVD decoupling produces the most suitable combinations for independent "multi-loop" control in the transformed variables, so its performance may be better than RGA-based design (at the expense of losing physical interpretability).
If some of the vectors in \\(V\\) (input directions) have a significant component on a particular input, and the corresponding output direction is also significantly pointing to a particular output, that combination is a good candidate for an independent multi-loop control.
In this chapter, the control of systems with multiple inputs and outputs is discussed using SISO-based tools, either directly or after some multivariable decoupling transformations.
- standard equipment can be used (PID controllers, etc.)
- their decoupled behavior enables easier tuning with model-free strategies
- decentralized implementation tends to be more fault-tolerant, as individual loops will try to keep their set-points even in the case some other components have failed.
The wind-up problem can appear with integral action regulators: during significative step changes in the set point, the integral of the error keeps accumulation and when reaching the desired set-point the accumulated integral action produces a significant overshoot increment.
In SISO PID regulators, anti-windup schemes are implemented by either stopping integration if the actuator is saturated or by implementing the following control law:
When switching on the regulator, significant transient behavior can be seen and the controller may saturate the actuators.
The solution is similar to that of the wind-up phenomenon: the regulator should be always on, carrying out calculations by using \eqref{eq:antiwindup_pid}.
<aid="org9f7e5c2"></a>Albertos, P., and S. Antonio. 2004. “Decentralized and Decoupled Control.” In _Multivariable Control Systems: An Engineering Approach_, 125–62. Advanced Textbooks in Control and Signal Processing. Springer-Verlag. <https://doi.org/10.1007/b97506>.