dehaeze21_mechatronics_appr.../talk/dehaeze21_mechatronics_approach_nass_talk.tex
2021-07-28 09:43:36 +02:00

706 lines
18 KiB
TeX

% Created 2021-07-27 mar. 08:42
% Intended LaTeX compiler: pdflatex
\documentclass[aspectratio=169, t]{clean-beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage[most]{tcolorbox}
\usepackage{bm}
\usepackage{booktabs}
\usepackage{tabularx}
\usepackage{array}
\usepackage{siunitx}
\usepackage{mathtools}
\author[shortname]{Thomas Dehaeze \inst{1,2}, Julien Bonnefoy \inst{1} and Christophe Collette \inst{2,3}}
\institute[shortinst]{\inst{1} European Synchrotron Radiation Facility, Grenoble, France \and %
\inst{2} Precision Mechatronics Laboratory, University of Liege, Belgium \and %
\inst{3} BEAMS Department, Free University of Brussels, Belgium}
\titlegraphic{\includegraphics[height=1.5cm]{figs/logo_pml_full.pdf} \hspace{5em} %
\includegraphics[height=1.5cm]{figs/logo_esrf.pdf} \hspace{5em} %
\includegraphics[height=1.5cm]{figs/logo_medsi.jpg}}
\beamertemplatenavigationsymbolsempty
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
\insertframenumber/\inserttotalframenumber
}
\setlength{\leftmargini}{5pt}
\setbeamertemplate{itemize items}[circle]
\usefonttheme[onlymath]{serif}
\makeatletter
\preto\Gin@extensions{png,}
\DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
\makeatother
\setbeamertemplate{bibliography item}[text]
\DeclareSIUnit\rms{rms}
\usetheme{default}
\date{}
\title{Mechatronics Approach for the Development of a Nano-Active-Stabilization-System}
\subtitle{MEDSI2020, July 26-29, 2021}
\hypersetup{
pdfauthor={},
pdftitle={Mechatronics Approach for the Development of a Nano-Active-Stabilization-System},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 27.2 (Org mode 9.5)},
pdflang={English}}
\begin{document}
\maketitle
\section*{Introduction}
\label{sec:orgdabb222}
\begin{frame}[label={sec:org75433ab}]{The ID31 Micro Station}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/micro_hexapod_render.pdf}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:orga898a71}]{Introduction - The Nano Active Stabilization System (NASS)}
\textbf{Objective}: Improve the position accuracy from \(\approx 10\,\mu m\) down to \(\approx 10\,nm\) \newline
\textbf{Design approach}: ``Model based design'' / ``Predictive Design''
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass-concept.red.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org9574917}]{Overview of the Mechatronic Approach - Model Based Design}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png}
\end{center}
\end{frame}
\section{Conceptual Phase}
\label{sec:org62eb09b}
\begin{frame}[label={sec:orgd53fdb4}]{Outline - Conceptual Phase}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_conceptual_phase.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgf99643e}]{Feedback Control - The Control Loop}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/classical_feedback_schematic.png}
\end{center}
\vspace{-1em}
\begin{columns}
\begin{column}{0.4\columnwidth}
\begin{tcolorbox}[title=Why Feedback?]
\begin{itemize}
\item Model uncertainties
\item Unknown disturbances
\end{itemize}
\end{tcolorbox}
\end{column}
\begin{column}{0.6\columnwidth}
\begin{tcolorbox}[title=Every elements can limit the performances]
\begin{itemize}
\item Drivers, Actuators, Sensors
\item Mechanical System
\item Controller
\end{itemize}
\end{tcolorbox}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orge603014}]{Noise Budgeting and Required Control Bandwidth}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/identification_control_noise_budget.red.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org1a8d575}]{Limitation of the Controller Bandwidth?}
\begin{columns}
\begin{column}{0.6\columnwidth}
\vspace{-2em}
\only<1>{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_1_classical.pdf}
\end{center}
}\only<2>{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_2_above_res.pdf}
\end{center}
}
\end{column}
\begin{column}{0.4\columnwidth}
\vspace{-2em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa_simple.pdf}
\end{center}
\only<1>{
\begin{tcolorbox}[title=Typical Approach, fontupper=\small]
``As stiff as possible'' \newline
Simple controller (e.g. PID)
\end{tcolorbox}
}\only<2>{
\begin{tcolorbox}[title=Alternative Approach, fontupper=\small]
Limited by complex dynamics\newline
Model based controller
\end{tcolorbox}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org239155a}]{Soft or Stiff \(\nu\text{-hexapod}\) ? Interaction with the \(\mu\text{-station}\)}
\vspace{-3em}
\begin{columns}
\begin{column}{0.3\columnwidth}
\onslide<1->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_uncertainty_support_only_hexapod.pdf}
\end{center}
}\onslide<2->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_uncertainty_support.pdf}
\end{center}
}
\end{column}
\begin{column}{0.7\columnwidth}
\onslide<1->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_alone_b.pdf}
\end{center}
\vspace{-2em}
}\onslide<2->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_support_uncertainty_d_L_b.pdf}
\end{center}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgeb9ee99}]{Complexity of the Micro-Station Dynamics (Model Analysis)}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/modes_annotated.png}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:orgb8ddd28}]{Control Strategy: HAC-LAC}
\vspace{-0.5em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_schematic_test.pdf}
\end{center}
\vspace{-2.0em}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{tcolorbox}[title=Low Authority Control]
\begin{itemize}
\item Collocated sensors/actuators
\item Guaranteed Stability, simple \(K\)
\item Adds damping
\item \(\searrow\) vibration near resonances
\end{itemize}
\end{tcolorbox}
\end{column}
\begin{column}{0.5\columnwidth}
\begin{tcolorbox}[title=High Authority Control]
\begin{itemize}
\item Position sensors
\item Complex dynamics
\item Use transformation matrices
\item \(\searrow\) vibration in the bandwidth
\end{itemize}
\end{tcolorbox}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org0579a05}]{Multi-Body Models - Simulations}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/simscape_simulation.jpg}
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\node[align=left, anchor=south east, text width=5.5cm,shift={(-1em, 1em)}] at (current page.south east){%
\begin{tcolorbox}
\begin{center}
Validation of the concept
\end{center}
\end{tcolorbox}};
\end{tikzpicture}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\section{Detail Design Phase}
\label{sec:orga9ae877}
\begin{frame}[label={sec:org1b0984d}]{Outline - Detail Design Phase}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_detailed_phase.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org1f20e49}]{Nano-Hexapod Overview - Key elements}
\vspace{-1.5em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_elements.red.pdf}
\end{center}
\begin{tcolorbox}[title=General Specifications, sidebyside]
\begin{itemize}
\item Flexible modes as high as possible
\item Only flexible elements (no backlash, play, etc.)
\end{itemize}
\tcblower
\begin{itemize}
\item Integrated Force Sensor and Displacement Sensor
\item Predictable dynamics
\end{itemize}
\end{tcolorbox}
\end{frame}
\begin{frame}[label={sec:orge2a3011}]{Choice of Actuator and Flexible Joint Design}
\vspace{-2em}
\begin{columns}
\begin{column}{0.5\columnwidth}
\scriptsize
\begin{center}
\begin{tabularx}{0.8\linewidth}{ccc}
\toprule
\textbf{Characteristic} & \textbf{Specs} & \textbf{Doc.}\\
\midrule
Axial Stiff. & \SI{\approx 2}{\newton/\micro\meter} & \SI{1.8}{\newton/\micro\meter}\\
Sufficient Stroke & \SI{> 100}{\micro\meter} & \SI{368}{\micro\meter}\\
Height & \SI{< 50}{\milli\meter} & \SI{30}{\milli\meter}\\
High Resolution & \SI{< 5}{\nano\meter} & \SI{3}{\nano\meter}\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\vspace{-1em}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.9\linewidth]{figs/apa300ml_picture.jpg}
\caption{Picture of the APA300ML}
\end{figure}
\end{column}
\begin{column}{0.5\columnwidth}
\scriptsize
\begin{center}
\begin{tabularx}{0.9\linewidth}{cccc}
\toprule
\textbf{Characteristic} & \textbf{Specs} & \textbf{FEM}\\
\midrule
Axial Stiff. & \SI{> 100}{\newton/\micro\meter} & 94\\
Bending Stiff. & \SI{< 100}{\newton\meter/\radian} & 5\\
Torsion Stiff. & \SI{< 500}{\newton\meter/\radian} & 260\\
Bending Stroke & \SI{> 1}{\milli\radian} & 20\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\vspace{-1em}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.9\linewidth]{figs/flexible_joint_picture.jpg}
\caption{Picture of the joint}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgc5a1632}]{Instrumentation}
\vspace{-1em}
\begin{columns}
\begin{column}{0.33\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,height=2.2cm]{figs/amplifier_PD200.jpg}
\caption{PiezoDrive - PD200 Amplifier}
\end{figure}
\vspace{-1em}
\tiny
\begin{center}
\begin{tabularx}{0.75\linewidth}{lc}
\toprule
\textbf{Characteristics} & \textbf{Manual}\\
\midrule
Gain & \num{20}\\
Noise & \SI{0.7}{\milli\volt\rms}\\
Small Signal BW & \SI{7.4}{\kilo\hertz}\\
Large Signal BW & \SI{300}{\hertz}\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\end{column}
\begin{column}{0.33\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,height=2.2cm]{figs/encoder_vionic.jpg}
\caption{Renishaw - Vionic Encoder}
\end{figure}
\vspace{-1em}
\tiny
\begin{center}
\begin{tabularx}{0.85\linewidth}{lc}
\toprule
\textbf{Characteristics} & \textbf{Manual}\\
\midrule
Range & Ruler length\\
Resolution & \SI{2.5}{\nano\meter}\\
Sub-Divisional Error & \SI{<\pm 15}{\nano\meter}\\
Bandwidth & \SI{>5}{kHz}\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\end{column}
\begin{column}{0.33\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,height=2.2cm]{figs/Speedgoat-Performance-Real-Time-Target-Machine.jpg}
\caption{Speedgoat - Target Machine}
\end{figure}
\vspace{-1em}
\tiny
\begin{center}
\begin{tabularx}{0.8\linewidth}{lc}
\toprule
\textbf{Characteristics} & \textbf{Manual}\\
\midrule
ADC (x16) & 16bit, \SI{\pm 10}{V}\\
DAC (x8) & 16bit, \SI{\pm 10}{V}\\
Digital I/O (x30) & \SI{<\pm 15}{\nano\meter}\\
Sampling Freq. & \SI{>10}{kHz}\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\end{column}
\end{columns}
\vspace{1em}
\begin{tcolorbox}
\begin{center}
All elements could be chosen/design based on the models
\end{center}
\end{tcolorbox}
\end{frame}
\section{Experimental Phase}
\label{sec:org000fc13}
\begin{frame}[label={sec:org5a3d17b}]{Outline - Experimental Phase}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_experimental_phase.red.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orge94eaf3}]{Flexible Joints - Measurements}
\vspace{-2em}
\begin{columns}
\begin{column}{0.45\columnwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/received_flexible_joints.jpg}
\end{center}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/flexible_joint_bench.pdf}
\end{center}
\end{column}
\begin{column}{0.55\columnwidth}
\begin{center}
\includegraphics[scale=1,width=0.9\linewidth]{figs/flex_joint_meas_example_F_d_lin_fit.pdf}
\end{center}
\begin{tcolorbox}[title=Other Measurement Benches]
\begin{itemize}
\item Amplifier Output Noise and Bandwidth
\item Encoder Measurement Noise
\item DAC Output Noise
\end{itemize}
\end{tcolorbox}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org518f2db}]{Amplified Piezoelectric Actuator - Test Bench}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa300ml.red.pdf}
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\node[align=left, anchor=north east, text width=4.5cm] at (current page.north east){%
\begin{tcolorbox}[title=Goals]
\begin{itemize}
\item Identify Dynamics
\item Tune APA Model
\item Test IFF
\end{itemize}
\end{tcolorbox}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:org749c413}]{Amplified Piezoelectric Actuator - Measured FRF and Extracted Model}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/apa_comp_model_frf.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org1d672c7}]{Amplified Piezoelectric Actuator - Integral Force Feedback}
\vspace{-3em}
\begin{columns}
\begin{column}{0.62\columnwidth}
\vspace{1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa300ml_iff.pdf}
\end{center}
\[ K_{\text{IFF}}(s) = \frac{g}{s} \]
\end{column}
\begin{column}{0.38\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/iff_results_apa95ml.pdf}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org7b5008c}]{Strut - Mounting Tool}
\vspace{-2.5em}
\begin{columns}
\begin{column}{0.63\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/image_mounting_strut_bench.JPG}
\end{center}
\end{column}
\begin{column}{0.37\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/mounted_strut_picture.jpg}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgc1ecd2e}]{Strut - Dynamical Measurements}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_strut.red.pdf}
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\node[align=left, anchor=north east, text width=5cm] at (current page.north east){%
\begin{tcolorbox}[title=Goals]
\begin{itemize}
\item Identify Dynamics
\item Tune Model
\item Flexible joints effects
\item Encoder effect
\end{itemize}
\end{tcolorbox}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:org8ce2d42}]{Strut - Encoders Output and Spurious Modes}
\vspace{-3em}
\begin{columns}
\begin{column}{0.43\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/frf_struts_enc_int.pdf}
\end{center}
\end{column}
\begin{column}{0.57\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/meas_spur_res_struts_2_encoder.jpg}
\end{center}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/mode_shapes_annotated.pdf}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgb6be716}]{Nano-Hexapod Mounting Tool}
\begin{center}
\includegraphics[scale=1,width=0.9\linewidth]{figs/nano_hexapod_mounting.JPG}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:org281520e}]{Mounted Nano-Hexapod}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/mounted_nano_hexapod_picture.jpg}
\end{center}
\end{frame}
\begin{frame}[label={sec:org351990a}]{Nano-Hexapod - Identified Dynamics (Diagonal elements)}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_enc_iff_bode_plot.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org18b6334}]{Nano-Hexapod - Damped Dynamics}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_damped_bode_plot.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org79d4d53}]{The Nano-Hexapod on top of the Micro-Station}
\vspace{-0.5em}
\only<1>{
\begin{center}
\includegraphics[scale=1,width=0.85\linewidth]{figs/nano_hexapod_id31.jpg}
\end{center}
}\only<2>{
\begin{center}
\includegraphics[scale=1,width=0.85\linewidth]{figs/nano_hexapod_id31_zoom.jpg}
\end{center}
}
\end{frame}
\section{Conclusion}
\label{sec:org5c1e008}
\begin{frame}[label={sec:orgd50b8eb}]{Conclusion}
\begin{columns}
\begin{column}{0.4\columnwidth}
\textbf{Mechatronics Approach}:
\begin{itemize}
\item Use of several models
\item Predictive design
\item Beneficial in terms of: cost, delays, performances
\end{itemize}
\vspace{0.5em}
\textbf{Future Work}:
\begin{itemize}
\item Optimal/Robust control
\item Control Test Bench
\item Implementation on ID31
\end{itemize}
\end{column}
\begin{column}{0.6\columnwidth}
\vspace{-3em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_ref_tracking_results.pdf}
\end{center}
\end{column}
\end{columns}
\begin{tcolorbox}[title=Many thanks to, sidebyside]
Philipp Brumund, Ludovic Ducotte\newline
Jose-Maria Clement, Marc Lesourd
\tcblower
Youness Benyakhlef, Pierrick Got\newline
Damien Coulon and the whole team
\end{tcolorbox}
\end{frame}
\end{document}