Initial Commit

This commit is contained in:
Thomas Dehaeze 2021-08-27 18:48:24 +02:00
commit 7dae826a5c
127 changed files with 43456 additions and 0 deletions

2
.gitattributes vendored Normal file
View File

@ -0,0 +1,2 @@
*.svg binary
*.pdf binary

293
.gitignore vendored Normal file
View File

@ -0,0 +1,293 @@
auto/
.auctex-auto/
nohup.out
# Windows default autosave extension
*.asv
# OSX / *nix default autosave extension
*.m~
# Compiled MEX binaries (all platforms)
*.mex*
# Packaged app and toolbox files
*.mlappinstall
*.mltbx
# Generated helpsearch folders
helpsearch*/
# Simulink code generation folders
slprj/
sccprj/
# Simulink autosave extension
*.autosave
# Octave session info
octave-workspace
# Simulink Cache
*.slxc
## Core latex/pdflatex auxiliary files:
*.aux
*.lof
*.log
*.lot
*.fls
*.out
*.toc
*.fmt
*.fot
*.cb
*.cb2
.*.lb
## Intermediate documents:
*.dvi
*.xdv
*-converted-to.*
# these rules might exclude image files for figures etc.
# *.ps
# *.eps
# *.pdf
## Generated if empty string is given at "Please type another file name for output:"
.pdf
## Bibliography auxiliary files (bibtex/biblatex/biber):
*.bbl
*.bcf
*.blg
*-blx.aux
*-blx.bib
*.run.xml
## Build tool auxiliary files:
*.fdb_latexmk
*.synctex
*.synctex(busy)
*.synctex.gz
*.synctex.gz(busy)
*.pdfsync
## Build tool directories for auxiliary files
# latexrun
latex.out/
## Auxiliary and intermediate files from other packages:
# algorithms
*.alg
*.loa
# achemso
acs-*.bib
# amsthm
*.thm
# beamer
*.nav
*.pre
*.snm
*.vrb
# changes
*.soc
# comment
*.cut
# cprotect
*.cpt
# elsarticle (documentclass of Elsevier journals)
*.spl
# endnotes
*.ent
# fixme
*.lox
# feynmf/feynmp
*.mf
*.mp
*.t[1-9]
*.t[1-9][0-9]
*.tfm
#(r)(e)ledmac/(r)(e)ledpar
*.end
*.?end
*.[1-9]
*.[1-9][0-9]
*.[1-9][0-9][0-9]
*.[1-9]R
*.[1-9][0-9]R
*.[1-9][0-9][0-9]R
*.eledsec[1-9]
*.eledsec[1-9]R
*.eledsec[1-9][0-9]
*.eledsec[1-9][0-9]R
*.eledsec[1-9][0-9][0-9]
*.eledsec[1-9][0-9][0-9]R
# glossaries
*.acn
*.acr
*.glg
*.glo
*.gls
*.glsdefs
# gnuplottex
*-gnuplottex-*
# gregoriotex
*.gaux
*.gtex
# htlatex
*.4ct
*.4tc
*.idv
*.lg
*.trc
*.xref
# hyperref
*.brf
# knitr
*-concordance.tex
# TODO Comment the next line if you want to keep your tikz graphics files
*.tikz
*-tikzDictionary
# listings
*.lol
# makeidx
*.idx
*.ilg
*.ind
*.ist
# minitoc
*.maf
*.mlf
*.mlt
*.mtc[0-9]*
*.slf[0-9]*
*.slt[0-9]*
*.stc[0-9]*
# minted
_minted*
*.pyg
# morewrites
*.mw
# nomencl
*.nlg
*.nlo
*.nls
# pax
*.pax
# pdfpcnotes
*.pdfpc
# sagetex
*.sagetex.sage
*.sagetex.py
*.sagetex.scmd
# scrwfile
*.wrt
# sympy
*.sout
*.sympy
sympy-plots-for-*.tex/
# pdfcomment
*.upa
*.upb
# pythontex
*.pytxcode
pythontex-files-*/
# tcolorbox
*.listing
# thmtools
*.loe
# TikZ & PGF
*.dpth
*.md5
*.auxlock
# todonotes
*.tdo
# vhistory
*.hst
*.ver
# easy-todo
*.lod
# xcolor
*.xcp
# xmpincl
*.xmpi
# xindy
*.xdy
# xypic precompiled matrices
*.xyc
# endfloat
*.ttt
*.fff
# Latexian
TSWLatexianTemp*
## Editors:
# WinEdt
*.bak
*.sav
# Texpad
.texpadtmp
# LyX
*.lyx~
# Kile
*.backup
# KBibTeX
*~[0-9]*
# auto folder when using emacs and auctex
./auto/*
*.el
# expex forward references with \gathertags
*-tags.tex
# standalone packages
*.sta

21
LICENSE.txt Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Dehaeze Thomas
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,10 @@
@article{dehaeze21_activ_dampin_rotat_platf_using,
author = {Thomas Dehaeze and Christophe Collette},
title = {Active Damping of Rotating Platforms Using Integral Force
Feedback},
journal = {Engineering Research Express},
year = 2021,
doi = {10.1088/2631-8695/abe803},
url = {https://doi.org/10.1088/2631-8695/abe803},
month = {Feb},
}

133
index.html Normal file
View File

@ -0,0 +1,133 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-02-20 sam. 22:46 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Active Damping of Rotating Platforms using Integral Force Feedback</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Thomas Dehaeze" />
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<style> #content {margin: auto;} </style>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Active Damping of Rotating Platforms using Integral Force Feedback
<br />
<span class="subtitle">Dehaeze Thomas, Collette Christophe</span>
</h1>
<blockquote>
<p>
<b>Abstract</b>:
</p>
<p>
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
Conditions for stability and optimal parameters are derived.
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
</p>
</blockquote>
<div id="outline-container-org377b3aa" class="outline-2">
<h2 id="org377b3aa">Journal Paper (<a href="journal/dehaeze21_activ_dampin_rotat_platf_using.pdf">pdf</a>)</h2>
<div class="outline-text-2" id="text-org377b3aa">
<p>
The paper has been created using <a href="https://orgmode.org/">Org Mode</a> (generating <a href="https://www.latex-project.org/">LaTeX</a> code) under <a href="https://www.gnu.org/software/emacs/">Emacs</a>.
</p>
<p>
To cite this journal paper use the following bibtex code.
</p>
<div class="org-src-container">
<pre class="src src-bibtex"><span class="org-function-name">@article</span>{<span class="org-constant">dehaeze21_activ_dampin_rotat_platf_using</span>,
<span class="org-variable-name">author</span> = {Thomas Dehaeze and Christophe Collette},
<span class="org-variable-name">title</span> = {Active Damping of Rotating Platforms Using Integral Force
Feedback},
<span class="org-variable-name">journal</span> = {Engineering Research Express},
<span class="org-variable-name">year</span> = 2021,
<span class="org-variable-name">doi</span> = {<span class="org-button">10.1088/2631-8695/abe803</span>},
<span class="org-variable-name">url</span> = {<span class="org-button">https://doi.org/10.1088/2631-8695/abe803</span>},
<span class="org-variable-name">month</span> = {Feb},
}
</pre>
</div>
<p>
You can also use the formatted citation below.
</p>
<blockquote>
<p>
Dehaeze, T., &amp; Collette, C., Active damping of rotating platforms using integral force feedback, Engineering Research Express, (2021).
</p>
</blockquote>
</div>
</div>
<div id="outline-container-org3920c33" class="outline-2">
<h2 id="org3920c33">Conference Paper (<a href="paper/dehaeze20_activ_dampin_rotat_platf_integ_force_feedb.pdf">pdf</a>)</h2>
<div class="outline-text-2" id="text-org3920c33">
<p>
To cite this conference paper use the following bibtex code.
</p>
<div class="org-src-container">
<pre class="src src-bibtex"><span class="org-function-name">@inproceedings</span>{<span class="org-constant">dehaeze20_activ_dampin_rotat_platf_integ_force_feedb</span>,
<span class="org-variable-name">author</span> = {Dehaeze, T. and Collette, C.},
<span class="org-variable-name">title</span> = {Active Damping of Rotating Platforms using Integral Force
Feedback},
<span class="org-variable-name">booktitle</span> = {Proceedings of the International Conference on Modal
Analysis Noise and Vibration Engineering (ISMA)},
<span class="org-variable-name">year</span> = 2020,
}
</pre>
</div>
<p>
You can also use the formatted citation below.
</p>
<blockquote>
<p>
Dehaeze, T., &amp; Collette, C., Active damping of rotating platforms using integral force feedback, In , Proceedings of the International Conference on Modal Analysis Noise and Vibration Engineering (ISMA) (pp. ) (2020)
</p>
</blockquote>
</div>
</div>
<div id="outline-container-org36068a4" class="outline-2">
<h2 id="org36068a4">Matlab Scripts (<a href="matlab/index.html">link</a>)</h2>
<div class="outline-text-2" id="text-org36068a4">
<p>
The Matlab scripts that permits to obtain all the results presented in the paper are accessible <a href="matlab/index.html">here</a>.
</p>
</div>
</div>
<div id="outline-container-org0a8713e" class="outline-2">
<h2 id="org0a8713e">Figures (<a href="tikz/index.html">link</a>)</h2>
<div class="outline-text-2" id="text-org0a8713e">
<p>
All the figures in the paper are generated using either <a href="https://sourceforge.net/projects/pgf/">TikZ</a> or <a href="https://inkscape.org/">Inkscape</a>. The code snippets that was used to generate the figures are accessible <a href="tikz/index.html">here</a>.
</p>
</div>
</div>
<div id="outline-container-org35dcb96" class="outline-2">
<h2 id="org35dcb96">Talk (<a href="talk/talk.pdf">link</a>)</h2>
<div class="outline-text-2" id="text-org35dcb96">
<iframe width="720"
height="540"
src="https://www.youtube.com/embed/F9j2-ge2FPE"
frameborder="0" allowfullscreen> </iframe>
</div>
</div>
</div>
</body>
</html>

64
index.org Normal file
View File

@ -0,0 +1,64 @@
#+TITLE: Active Damping of Rotating Platforms using Integral Force Feedback
:DRAWER:
#+SUBTITLE: Dehaeze Thomas, Collette Christophe
#+OPTIONS: toc:nil
#+OPTIONS: html-postamble:nil
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
#+HTML_HEAD: <style> #content {margin: auto;} </style>
:END:
#+begin_quote
*Abstract*:
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
Conditions for stability and optimal parameters are derived.
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
#+end_quote
* Journal Paper ([[file:journal/dehaeze21_activ_dampin_rotat_platf_using.pdf][pdf]])
:PROPERTIES:
:UNNUMBERED: t
:END:
The paper has been created using [[https://orgmode.org/][Org Mode]] (generating [[https://www.latex-project.org/][LaTeX]] code) under [[https://www.gnu.org/software/emacs/][Emacs]].
To cite this journal paper use the following bibtex code.
#+begin_src bibtex
@article{dehaeze21_activ_dampin_rotat_platf_using,
author = {Thomas Dehaeze and Christophe Collette},
title = {Active Damping of Rotating Platforms Using Integral Force
Feedback},
journal = {Engineering Research Express},
year = 2021,
doi = {10.1088/2631-8695/abe803},
url = {https://doi.org/10.1088/2631-8695/abe803},
month = {Feb},
}
#+end_src
You can also use the formatted citation below.
#+begin_quote
Dehaeze, T., & Collette, C., Active damping of rotating platforms using integral force feedback, Engineering Research Express, (2021).
#+end_quote
* Matlab Scripts ([[file:matlab/index.org][link]])
:PROPERTIES:
:UNNUMBERED: t
:END:
The Matlab scripts that permits to obtain all the results presented in the paper are accessible [[file:matlab/index.org][here]].
* Figures ([[file:tikz/index.org][link]])
:PROPERTIES:
:UNNUMBERED: t
:END:
All the figures in the paper are generated using either [[https://sourceforge.net/projects/pgf/][TikZ]] or [[https://inkscape.org/][Inkscape]]. The code snippets that was used to generate the figures are accessible [[file:tikz/index.org][here]].

Binary file not shown.

BIN
journal/figs/fig01.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig02a.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig02b.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig03a.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig03b.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig04.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig05.pdf Normal file

Binary file not shown.

1524
journal/figs/fig06.pdf Normal file

File diff suppressed because it is too large Load Diff

BIN
journal/figs/fig07.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig08.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig09.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig10.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig11.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig12.pdf Normal file

Binary file not shown.

1477
journal/figs/fig13.pdf Normal file

File diff suppressed because it is too large Load Diff

BIN
journal/figs/fig14.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig15.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig16.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig17.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig18.pdf Normal file

Binary file not shown.

BIN
journal/figs/fig19.pdf Normal file

Binary file not shown.

1
journal/iopams.sty Normal file
View File

@ -0,0 +1 @@
%% %% This is file `iopams.sty' %% File to include AMS fonts and extra definitions for bold greek %% characters for use with iopart.cls %% \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{iopams}[1997/02/13 v1.0] \RequirePackage{amsgen}[1995/01/01] \RequirePackage{amsfonts}[1995/01/01] \RequirePackage{amssymb}[1995/01/01] \RequirePackage{amsbsy}[1995/01/01] % \iopamstrue % \newif\ifiopams in iopart.cls & iopbk2e.cls % % allows optional text to be in author guidelines % % Bold lower case Greek letters % \newcommand{\balpha}{\boldsymbol{\alpha}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\bgamma}{\boldsymbol{\gamma}} \newcommand{\bdelta}{\boldsymbol{\delta}} \newcommand{\bepsilon}{\boldsymbol{\epsilon}} \newcommand{\bzeta}{\boldsymbol{\zeta}} \newcommand{\bfeta}{\boldsymbol{\eta}} \newcommand{\btheta}{\boldsymbol{\theta}} \newcommand{\biota}{\boldsymbol{\iota}} \newcommand{\bkappa}{\boldsymbol{\kappa}} \newcommand{\blambda}{\boldsymbol{\lambda}} \newcommand{\bmu}{\boldsymbol{\mu}} \newcommand{\bnu}{\boldsymbol{\nu}} \newcommand{\bxi}{\boldsymbol{\xi}} \newcommand{\bpi}{\boldsymbol{\pi}} \newcommand{\brho}{\boldsymbol{\rho}} \newcommand{\bsigma}{\boldsymbol{\sigma}} \newcommand{\btau}{\boldsymbol{\tau}} \newcommand{\bupsilon}{\boldsymbol{\upsilon}} \newcommand{\bphi}{\boldsymbol{\phi}} \newcommand{\bchi}{\boldsymbol{\chi}} \newcommand{\bpsi}{\boldsymbol{\psi}} \newcommand{\bomega}{\boldsymbol{\omega}} \newcommand{\bvarepsilon}{\boldsymbol{\varepsilon}} \newcommand{\bvartheta}{\boldsymbol{\vartheta}} \newcommand{\bvaromega}{\boldsymbol{\varomega}} \newcommand{\bvarrho}{\boldsymbol{\varrho}} \newcommand{\bvarzeta}{\boldsymbol{\varsigma}} %NB really sigma \newcommand{\bvarsigma}{\boldsymbol{\varsigma}} \newcommand{\bvarphi}{\boldsymbol{\varphi}} % % Bold upright capital Greek letters % \newcommand{\bGamma}{\boldsymbol{\Gamma}} \newcommand{\bDelta}{\boldsymbol{\Delta}} \newcommand{\bTheta}{\boldsymbol{\Theta}} \newcommand{\bLambda}{\boldsymbol{\Lambda}} \newcommand{\bXi}{\boldsymbol{\Xi}} \newcommand{\bPi}{\boldsymbol{\Pi}} \newcommand{\bSigma}{\boldsymbol{\Sigma}} \newcommand{\bUpsilon}{\boldsymbol{\Upsilon}} \newcommand{\bPhi}{\boldsymbol{\Phi}} \newcommand{\bPsi}{\boldsymbol{\Psi}} \newcommand{\bOmega}{\boldsymbol{\Omega}} % % Bold versions of miscellaneous symbols % \newcommand{\bpartial}{\boldsymbol{\partial}} \newcommand{\bell}{\boldsymbol{\ell}} \newcommand{\bimath}{\boldsymbol{\imath}} \newcommand{\bjmath}{\boldsymbol{\jmath}} \newcommand{\binfty}{\boldsymbol{\infty}} \newcommand{\bnabla}{\boldsymbol{\nabla}} \newcommand{\bdot}{\boldsymbol{\cdot}} % % Symbols for caption % \renewcommand{\opensquare}{\mbox{$\square$}} \renewcommand{\opentriangle}{\mbox{$\vartriangle$}} \renewcommand{\opentriangledown}{\mbox{$\triangledown$}} \renewcommand{\opendiamond}{\mbox{$\lozenge$}} \renewcommand{\fullsquare}{\mbox{$\blacksquare$}} \newcommand{\fulldiamond}{\mbox{$\blacklozenge$}} \newcommand{\fullstar}{\mbox{$\bigstar$}} \newcommand{\fulltriangle}{\mbox{$\blacktriangle$}} \newcommand{\fulltriangledown}{\mbox{$\blacktriangledown$}} \endinput %% %% End of file `iopams.sty'.

1722
journal/iopart-num.bst Normal file

File diff suppressed because it is too large Load Diff

1107
journal/iopart.cls Normal file

File diff suppressed because it is too large Load Diff

1
journal/iopart10.clo Normal file
View File

@ -0,0 +1 @@
%% %% This is file `iopart10.clo' %% %% This file is distributed in the hope that it will be useful, %% but WITHOUT ANY WARRANTY; without even the implied warranty of %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %% %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} \ProvidesFile{iopart10.clo}[1997/01/13 v1.0 IOP Book file (size option)] \renewcommand\normalsize{% \@setfontsize\normalsize\@xpt\@xiipt \abovedisplayskip 10\p@ \@plus2\p@ \@minus5\p@ \abovedisplayshortskip \z@ \@plus3\p@ \belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@ \belowdisplayskip \abovedisplayskip \let\@listi\@listI} \normalsize \newcommand\small{% \@setfontsize\small\@ixpt{11}% \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@ \abovedisplayshortskip \z@ \@plus2\p@ \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@ \def\@listi{\leftmargin\leftmargini \topsep 4\p@ \@plus2\p@ \@minus2\p@ \parsep 2\p@ \@plus\p@ \@minus\p@ \itemsep \parsep}% \belowdisplayskip \abovedisplayskip } \newcommand\footnotesize{% \@setfontsize\footnotesize\@viiipt{9.5}% \abovedisplayskip 6\p@ \@plus2\p@ \@minus4\p@ \abovedisplayshortskip \z@ \@plus\p@ \belowdisplayshortskip 3\p@ \@plus\p@ \@minus2\p@ \def\@listi{\leftmargin\leftmargini \topsep 3\p@ \@plus\p@ \@minus\p@ \parsep 2\p@ \@plus\p@ \@minus\p@ \itemsep \parsep}% \belowdisplayskip \abovedisplayskip } \newcommand\scriptsize{\@setfontsize\scriptsize\@viipt\@viiipt} \newcommand\tiny{\@setfontsize\tiny\@vpt\@vipt} \newcommand\large{\@setfontsize\large\@xiipt{14}} \newcommand\Large{\@setfontsize\Large\@xivpt{18}} \newcommand\LARGE{\@setfontsize\LARGE\@xviipt{22}} \newcommand\huge{\@setfontsize\huge\@xxpt{25}} \newcommand\Huge{\@setfontsize\Huge\@xxvpt{30}} \if@twocolumn \setlength\parindent{12\p@} \else \setlength\parindent{15\p@} \fi \setlength\headheight{12\p@} \setlength\headsep {12\p@} \setlength\topskip {10\p@} \setlength\footskip{20\p@} \setlength\maxdepth{.5\topskip} \setlength\@maxdepth\maxdepth \setlength\textwidth{31pc} \setlength\textheight{49pc} \setlength\oddsidemargin {24\p@} \setlength\evensidemargin {24\p@} \setlength\marginparwidth {72\p@} \setlength\marginparsep {10\p@} \setlength\marginparpush{5\p@} \setlength\topmargin{\z@} \setlength\footnotesep{6.65\p@} \setlength{\skip\footins} {9\p@ \@plus 4\p@ \@minus 2\p@} \setlength\floatsep {12\p@ \@plus 2\p@ \@minus 2\p@} \setlength\textfloatsep {20\p@ \@plus 2\p@ \@minus 4\p@} \setlength\intextsep {12\p@ \@plus 2\p@ \@minus 2\p@} \setlength\dblfloatsep {12\p@ \@plus 2\p@ \@minus 2\p@} \setlength\dbltextfloatsep{20\p@ \@plus 2\p@ \@minus 4\p@} \setlength\@fptop{0\p@} \setlength\@fpsep{8\p@ \@plus 2fil} \setlength\@fpbot{0\p@} \setlength\@dblfptop{0\p@} \setlength\@dblfpsep{8\p@ \@plus 2fil} \setlength\@dblfpbot{0\p@} \setlength\partopsep{2\p@ \@plus 1\p@ \@minus 1\p@} \def\@listI{\leftmargin\leftmargini \parsep=\z@ \topsep=5\p@ \@plus3\p@ \@minus3\p@ \itemsep=3\p@ \@plus2\p@ \@minus\p@} \let\@listi\@listI \@listi \def\@listii {\leftmargin\leftmarginii \labelwidth\leftmarginii \advance\labelwidth-\labelsep \topsep=2\p@ \@plus2\p@ \@minus\p@ \parsep=\z@ \itemsep=\parsep} \def\@listiii{\leftmargin\leftmarginiii \labelwidth\leftmarginiii \advance\labelwidth-\labelsep \topsep=\z@ \parsep=\z@ \partopsep=\z@ \itemsep=\z@} \def\@listiv {\leftmargin\leftmarginiv \labelwidth\leftmarginiv \advance\labelwidth-\labelsep} \def\@listv {\leftmargin\leftmarginv \labelwidth\leftmarginv \advance\labelwidth-\labelsep} \def\@listvi {\leftmargin\leftmarginvi \labelwidth\leftmarginvi \advance\labelwidth-\labelsep} \endinput %% %% End of file `iopart.clo'.

1
journal/iopart12.clo Normal file
View File

@ -0,0 +1 @@
%% %% This is file `iopart12.clo' %% %% This file is distributed in the hope that it will be useful, %% but WITHOUT ANY WARRANTY; without even the implied warranty of %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %% %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} \ProvidesFile{iopart12.clo}[1997/01/15 v1.0 LaTeX2e file (size option)] \renewcommand\normalsize{% \@setfontsize\normalsize\@xiipt{16}% \abovedisplayskip 12\p@ \@plus3\p@ \@minus7\p@ \abovedisplayshortskip \z@ \@plus3\p@ \belowdisplayshortskip 6.5\p@ \@plus3.5\p@ \@minus3\p@ \belowdisplayskip \abovedisplayskip \let\@listi\@listI} \normalsize \newcommand\small{% \@setfontsize\small\@xipt{14}% \abovedisplayskip 11\p@ \@plus3\p@ \@minus6\p@ \abovedisplayshortskip \z@ \@plus3\p@ \belowdisplayshortskip 6.5\p@ \@plus3.5\p@ \@minus3\p@ \def\@listi{\leftmargin\leftmargini \topsep 9\p@ \@plus3\p@ \@minus5\p@ \parsep 4.5\p@ \@plus2\p@ \@minus\p@ \itemsep \parsep}% \belowdisplayskip \abovedisplayskip } \newcommand\footnotesize{% % \@setfontsize\footnotesize\@xpt\@xiipt \@setfontsize\footnotesize\@xpt{13}% \abovedisplayskip 10\p@ \@plus2\p@ \@minus5\p@ \abovedisplayshortskip \z@ \@plus3\p@ \belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@ \def\@listi{\leftmargin\leftmargini \topsep 6\p@ \@plus2\p@ \@minus2\p@ \parsep 3\p@ \@plus2\p@ \@minus\p@ \itemsep \parsep}% \belowdisplayskip \abovedisplayskip } \newcommand\scriptsize{\@setfontsize\scriptsize\@viiipt{9.5}} \newcommand\tiny{\@setfontsize\tiny\@vipt\@viipt} \newcommand\large{\@setfontsize\large\@xivpt{18}} \newcommand\Large{\@setfontsize\Large\@xviipt{22}} \newcommand\LARGE{\@setfontsize\LARGE\@xxpt{25}} \newcommand\huge{\@setfontsize\huge\@xxvpt{30}} \let\Huge=\huge \if@twocolumn \setlength\parindent{14\p@} \else \setlength\parindent{18\p@} \fi \setlength\headheight{14\p@} \setlength\headsep{14\p@} \setlength\topskip{12\p@} \setlength\footskip{24\p@} \setlength\maxdepth{.5\topskip} \setlength\@maxdepth\maxdepth \setlength\textwidth{37.2pc} \setlength\textheight{56pc} \setlength\oddsidemargin {\z@} \setlength\evensidemargin {\z@} \setlength\marginparwidth {72\p@} \setlength\marginparsep{10\p@} \setlength\marginparpush{5\p@} \setlength\topmargin{-12pt} \setlength\footnotesep{8.4\p@} \setlength{\skip\footins} {10.8\p@ \@plus 4\p@ \@minus 2\p@} \setlength\floatsep {14\p@ \@plus 2\p@ \@minus 4\p@} \setlength\textfloatsep {24\p@ \@plus 2\p@ \@minus 4\p@} \setlength\intextsep {16\p@ \@plus 4\p@ \@minus 4\p@} \setlength\dblfloatsep {16\p@ \@plus 2\p@ \@minus 4\p@} \setlength\dbltextfloatsep{24\p@ \@plus 2\p@ \@minus 4\p@} \setlength\@fptop{0\p@} \setlength\@fpsep{10\p@ \@plus 1fil} \setlength\@fpbot{0\p@} \setlength\@dblfptop{0\p@} \setlength\@dblfpsep{10\p@ \@plus 1fil} \setlength\@dblfpbot{0\p@} \setlength\partopsep{3\p@ \@plus 2\p@ \@minus 2\p@} \def\@listI{\leftmargin\leftmargini \parsep=\z@ \topsep=6\p@ \@plus3\p@ \@minus3\p@ \itemsep=3\p@ \@plus2\p@ \@minus1\p@} \let\@listi\@listI \@listi \def\@listii {\leftmargin\leftmarginii \labelwidth\leftmarginii \advance\labelwidth-\labelsep \topsep=3\p@ \@plus2\p@ \@minus\p@ \parsep=\z@ \itemsep=\parsep} \def\@listiii{\leftmargin\leftmarginiii \labelwidth\leftmarginiii \advance\labelwidth-\labelsep \topsep=\z@ \parsep=\z@ \partopsep=\z@ \itemsep=\z@} \def\@listiv {\leftmargin\leftmarginiv \labelwidth\leftmarginiv \advance\labelwidth-\labelsep} \def\@listv{\leftmargin\leftmarginv \labelwidth\leftmarginv \advance\labelwidth-\labelsep} \def\@listvi {\leftmargin\leftmarginvi \labelwidth\leftmarginvi \advance\labelwidth-\labelsep} \endinput %% %% End of file `iopart12.clo'.

619
journal/paper.org Normal file
View File

@ -0,0 +1,619 @@
:DRAWER:
#+LATEX_CLASS: iopart
#+LATEX_CLASS_OPTIONS: [10pt]
#+OPTIONS: toc:nil author:nil title:nil date:nil
#+STARTUP: overview
#+LATEX_HEADER: \expandafter\let\csname equation*\endcsname\relax
#+LATEX_HEADER: \expandafter\let\csname endequation*\endcsname\relax
#+LATEX_HEADER: \usepackage{capt-of, subcaption}
#+LATEX_HEADER: \usepackage[colorlinks=true, allcolors=blue]{hyperref}
#+LATEX_HEADER: \usepackage{amsmath, amssymb, amsfonts, cases, bm}
#+LATEX_HEADER: \usepackage{algorithmic, graphicx, textcomp}
#+LATEX_HEADER: \usepackage{xcolor, import}
#+LATEX_HEADER: \usepackage[USenglish]{babel}
#+LATEX_HEADER: \usepackage{siunitx}
#+LATEX_HEADER: \usepackage{tikz}
#+LATEX_HEADER: \usetikzlibrary{shapes.misc,arrows,arrows.meta}
#+LATEX_HEADER: \usepackage[square,comma,sort&compress,numbers]{natbib}
#+LATEX_HEADER_EXTRA: \renewcommand{\bibsection}{\section*{References}}
:END:
* Build :noexport:
#+name: startblock
#+BEGIN_SRC emacs-lisp :results none :tangle no
(add-to-list 'org-latex-classes
'("iopart"
"\\documentclass{iopart}"
("\\section{%s}" . "\\section*{%s}")
("\\subsection{%s}" . "\\subsection*{%s}")
("\\subsubsection{%s}" . "\\subsubsection*{%s}")
("\\paragraph{%s}" . "\\paragraph*{%s}")
("\\subparagraph{%s}" . "\\subparagraph*{%s}"))
)
(setq org-latex-packages-alist nil)
(setq org-latex-default-packages-alist nil)
#+END_SRC
* Title Page :ignore:
#+begin_export latex
\title{Active damping of rotating platforms using integral force feedback}
\author{Thomas Dehaeze$^{1,3}$ and Christophe Collette$^{1,2}$}
\address{$^1$ Precision Mechatronics Laboratory, University of Liege, Belgium}
\address{$^2$ BEAMS Department, Free University of Brussels, Belgium}
\address{$^3$ European Synchrotron Radiation Facility, Grenoble, France}
\ead{tdehaeze@uliege.be}
#+end_export
#+begin_export latex
\begin{abstract}
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
Conditions for stability and optimal parameters are derived.
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
\end{abstract}
\vspace{2pc}
\noindent{\it Keywords}: Active Damping, IFF
\submitto{{\it Engineering Research Express\/}}
\maketitle
% Two Columns output
\ioptwocol
#+end_export
* Introduction
<<sec:introduction>>
** Needs for sensitive equipment :ignore:
There is an increasing need to reduce the undesirable vibration of sensitive equipment in many different fields such as in aerospace industry cite:hanieh03_activ_stewar,hauge04_sensor_contr_space_based_six,souleille18_concep_activ_mount_space_applic, semi conductor industry cite:yoshioka01_activ_microv_isolat_system_hi, microscopy cite:lan08_activ_vibrat_isolat_long_range,fleming15_low_order_dampin_track_contr, gravitational wave detectors cite:matichard15_seism_isolat_advan_ligo and particles accelerators cite:collette10_activ_quadr_stabil_futur_linear_partic_collid,dehaeze18_sampl_stabil_for_tomog_exper.
A common method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the vibrations above the frequency of the suspension modes cite:reilly06_critic,poel10_explor_activ_hard_mount_vibrat. \par
** Use of active damping :ignore:
In order to further decrease the residual vibrations, active damping can be used for reducing the magnification of the response in the vicinity of the resonances cite:collette11_review_activ_vibrat_isolat_strat.
Many active damping techniques have been developed over the years such as Positive Position Feedback (PPF) cite:lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc, Integral Force Feedback (IFF) cite:preumont91_activ and Direct Velocity Feedback (DVF) cite:karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb. \par
** IFF Description :ignore:
In cite:preumont92_activ_dampin_by_local_force, the IFF control scheme has been proposed, where a force sensor, a force actuator and an integral controller are used to directly augment the damping of a mechanical system.
When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros which facilitate to guarantee the stability of the closed loop system cite:preumont02_force_feedb_versus_accel_feedb.
It was latter shown that this property holds for multiple collated actuator/sensor pairs cite:preumont08_trans_zeros_struc_contr_with. \par
** Comparison of IFF with other techniques :ignore:
The main advantages of IFF over other active damping techniques are the guaranteed stability even in presence of flexible dynamics, good performances and robustness properties cite:preumont02_force_feedb_versus_accel_feedb. \par
** IFF Improvements :ignore:
Several improvements of the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping cite:teo15_optim_integ_force_feedb_activ_vibrat_contr or adding an high pass filter to recover the loss of compliance at low frequency cite:chesne16_enhan_dampin_flexib_struc_using_force_feedb.
Recently, an $\mathcal{H}_\infty$ optimization criterion has been used to derive optimal gains for the IFF controller cite:zhao19_optim_integ_force_feedb_contr. \par
** Problem with Gyroscopic effects :ignore:
However, when the platform is rotating, gyroscopic effects alter the system dynamics and IFF cannot be applied as is.
The purpose of this paper is to study how the IFF strategy can be adapted to deal with these gyroscopic effects. \par
** Paper's structure :ignore:
The paper is structured as follows.
Section ref:sec:dynamics presents a simple model of a rotating suspended platform that will be used throughout this study.
Section ref:sec:iff explains how the unconditional stability of IFF is lost due to gyroscopic effects induced by the rotation.
Section ref:sec:iff_hpf suggests a simple modification of the control law such that damping can be added to the suspension modes in a robust way.
Section ref:sec:iff_kp proposes to add springs in parallel with the force sensors to regain the unconditional stability of IFF.
Section ref:sec:comparison compares both proposed modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
* Dynamics of Rotating Platforms
<<sec:dynamics>>
** Model of a Rotating Platform :ignore:
In order to study how the rotation affects the use of IFF, a model of a suspended platform on top of a rotating stage is used.
Figure ref:fig:system represents a schematic of the model which is the simplest in which gyroscopic forces can be studied.
#+name: fig:system
#+caption: Schematic of the studied system
#+attr_latex: :scale 0.9
[[file:figs/fig01.pdf]]
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation $\theta(t) = \Omega t$ where $\Omega$ is the rotational speed in $\si{\radian\per\s}$.
The suspended platform consists of two orthogonal actuators each represented by three elements in parallel: a spring with a stiffness $k$ in $\si{\newton\per\meter}$, a dashpot with a damping coefficient $c$ in $\si{\newton\per(\meter\per\second)^{-1}}$ and an ideal force source $F_u, F_v$.
A payload with a mass $m$ in $\si{\kilo\gram}$, representing the sensitive equipment, is mounted on the (rotating) suspended platform.
Two reference frames are used: an inertial frame $(\vec{i}_x, \vec{i}_y, \vec{i}_z)$ and a uniform rotating frame $(\vec{i}_u, \vec{i}_v, \vec{i}_w)$ rigidly fixed on top of the rotating stage with $\vec{i}_w$ aligned with the rotation axis.
The position of the payload is represented by $(d_u, d_v, 0)$ expressed in the rotating frame.
#+latex: \par
** Equations of Motion :ignore:
To obtain the equations of motion for the system represented in Figure ref:fig:system, the Lagrangian equations are used:
#+name: eq:lagrangian_equations
\begin{equation}
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
\end{equation}
with $L = T - V$ the Lagrangian, $T$ the kinetic coenergy, $V$ the potential energy, $D$ the dissipation function, and $Q_i$ the generalized force associated with the generalized variable $\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}$.
The equation of motion corresponding to the constant rotation along $\vec{i}_w$ is disregarded as this motion is considered to be imposed by the rotation stage.
#+name: eq:energy_functions_lagrange
\begin{equation}
\begin{aligned}
T &= \frac{1}{2} m \left( ( \dot{d}_u - \Omega d_v )^2 + ( \dot{d}_v + \Omega d_u )^2 \right), \\
V &= \frac{1}{2} k \big( {d_u}^2 + {d_v}^2 \big), \ Q_1 = F_u, \\
D &= \frac{1}{2} c \big( \dot{d}_u{}^2 + \dot{d}_v{}^2 \big), \ Q_2 = F_v
\end{aligned}
\end{equation}
Substituting Eq. eqref:eq:energy_functions_lagrange into Eq. eqref:eq:lagrangian_equations for both generalized coordinates gives two coupled differential equations eqref:eq:eom_coupled_1 and eqref:eq:eom_coupled_2.
#+name: eq:eom_coupled
\begin{subequations}
\begin{align}
m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega^2 ) d_u &= F_u + 2 m \Omega \dot{d}_v \label{eq:eom_coupled_1} \\
m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega^2}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}} \label{eq:eom_coupled_2}
\end{align}
\end{subequations}
The uniform rotation of the system induces two gyroscopic effects as shown in Eq. eqref:eq:eom_coupled:
- Centrifugal forces: that can been seen as an added negative stiffness $- m \Omega^2$ along $\vec{i}_u$ and $\vec{i}_v$
- Coriolis Forces: that adds coupling between the two orthogonal directions.
One can verify that without rotation ($\Omega = 0$) the system becomes equivalent to two uncoupled one degree of freedom mass-spring-damper systems.
#+latex: \par
** Transfer Functions in the Laplace domain :ignore:
To study the dynamics of the system, the differential equations of motions eqref:eq:eom_coupled are converted into the Laplace domain and the $2 \times 2$ transfer function matrix $\mathbf{G}_d$ from $\begin{bmatrix}F_u & F_v\end{bmatrix}$ to $\begin{bmatrix}d_u & d_v\end{bmatrix}$ in Eq. eqref:eq:Gd_mimo_tf is obtained.
Its elements are shown in Eq. eqref:eq:Gd_indiv_el.
#+name: eq:Gd_mimo_tf
\begin{equation}
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
#+name: eq:Gd_indiv_el
\begin{subequations}
\begin{align}
& \mathbf{G}_{d}(1,1) = \mathbf{G}_{d}(2,2) = \dots \nonumber \\
& \quad {\frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}} \\
& \mathbf{G}_{d}(1,2) = -\mathbf{G}_{d}(1,2) = \dots \nonumber \\
& \quad {\frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}}
\end{align}
\end{subequations}
To simplify the analysis, the undamped natural frequency $\omega_0$ and the damping ratio $\xi$ are used as in Eq. eqref:eq:xi_and_omega.
#+name: eq:xi_and_omega
\begin{equation}
\omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}}
\end{equation}
The elements of transfer function matrix $\mathbf{G}_d$ are now describe by Eq. eqref:eq:Gd_w0_xi_k.
#+name: eq:Gd_w0_xi_k
\begin{subequations}
\begin{align}
\mathbf{G}_{d}(1,1) &= {\scriptstyle \frac{\frac{1}{k} \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}} \\
\mathbf{G}_{d}(1,2) &= {\scriptstyle \frac{\frac{1}{k} \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}}
\end{align}
\end{subequations}
For all further numerical analysis in this study, we consider $\omega_0 = \SI{1}{\radian\per\second}$, $k = \SI{1}{\newton\per\meter}$ and $\xi = 0.025 = \SI{2.5}{\percent}$.
Even though no system with such parameters will be encountered in practice, conclusions can be drawn relative to these parameters such that they can be generalized to any other set of parameters.
#+latex: \par
** System Dynamics and Campbell Diagram :ignore:
The poles of $\mathbf{G}_d$ are the complex solutions $p$ of Eq. eqref:eq:poles.
#+name: eq:poles
\begin{equation}
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
\end{equation}
Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles are obtained as shown in Eq. eqref:eq:pole_values.
#+name: eq:pole_values
\begin{subequations}
\begin{align}
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right)
\end{align}
\end{subequations}
The real and complex parts of these two pairs of complex conjugate poles are represented in Figure ref:fig:campbell_diagram as a function of the rotational speed $\Omega$.
As the rotational speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ goes to lower frequencies.
The system becomes unstable for $\Omega > \omega_0$ as the real part of $p_{-}$ is positive.
Physically, the negative stiffness term $-m\Omega^2$ induced by centrifugal forces exceeds the spring stiffness $k$.
In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are assumed ($\Omega < \omega_0$).
#+name: fig:campbell_diagram
#+caption: Campbell diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed $\Omega$
#+attr_latex: :environment subfigure :width 0.48\linewidth :align c
| file:figs/fig02a.pdf | file:figs/fig02b.pdf |
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
Looking at the transfer function matrix $\mathbf{G}_d$ in Eq. eqref:eq:Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite.
The bode plot of these two terms are shown in Figure ref:fig:plant_compare_rotating_speed for several rotational speeds $\Omega$.
These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as $\Omega$ increases.
For $\Omega > \omega_0$, the low frequency pair of complex conjugate poles $p_{-}$ becomes unstable.
#+name: fig:plant_compare_rotating_speed
#+caption: Bode plots for $\mathbf{G}_d$ for several rotational speed $\Omega$
#+attr_latex: :environment subfigure :width 0.48\linewidth :align c
| file:figs/fig03a.pdf | file:figs/fig03b.pdf |
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms |
* Decentralized Integral Force Feedback
<<sec:iff>>
** Force Sensors and Control Architecture :ignore:
In order to apply IFF to the rotating system, force sensors are added in series with the two actuators (Figure ref:fig:system_iff).
As this study focuses on decentralized control, two identical controllers $K_F$ are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
The control diagram is schematically shown in Figure ref:fig:control_diagram_iff.
#+name: fig:system_iff
#+caption: System with added force sensor in series with the actuators and with a decentralized IFF architecture
#+attr_latex: :scale 0.9
[[file:figs/fig04.pdf]]
#+name: fig:control_diagram_iff
#+caption: Control diagram for decentralized IFF
#+attr_latex: :scale 1
[[file:figs/fig05.pdf]]
#+latex: \par
** Plant Dynamics :ignore:
The forces $\begin{bmatrix}f_u & f_v\end{bmatrix}$ measured by the two force sensors represented in Figure ref:fig:system_iff are described by Eq. eqref:eq:measured_force.
#+name: eq:measured_force
\begin{equation}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
\end{equation}
The transfer function matrix $\mathbf{G}_{f}$ from actuator forces to measured forces in Eq. eqref:eq:Gf_mimo_tf can be obtained by inserting Eq. eqref:eq:Gd_w0_xi_k into Eq. eqref:eq:measured_force.
Its elements are shown in Eq. eqref:eq:Gf_indiv_el.
#+name: eq:Gf_mimo_tf
\begin{equation}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \mathbf{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
#+name: eq:Gf_indiv_el
\begin{subequations}
\label{eq:Gf}
\begin{align}
& \mathbf{G}_{f}(1,1) = \mathbf{G}_{f}(2,2) = \dots \nonumber \\
& \quad {\scriptstyle \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \label{eq:Gf_diag_tf} \\
& \mathbf{G}_{f}(1,2) = -\mathbf{G}_{f}(2,1) = \dots \nonumber \\
& \quad {\scriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \label{eq:Gf_off_diag_tf}
\end{align}
\end{subequations}
The zeros of the diagonal terms of $\mathbf{G}_f$ in Eq. eqref:eq:Gf_diag_tf are computed, and neglecting the damping for simplicity, two complex conjugated poles $z_{c}$ are obtained in Eq. eqref:eq:iff_zero_cc, and two real zeros $z_{r}$ in Eq. eqref:eq:iff_zero_real.
\begin{subequations}
\begin{align}
z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
\end{align}
\end{subequations}
It is interesting to see that the frequency of the pair of complex conjugate zeros $z_c$ in Eq. eqref:eq:iff_zero_cc always lies between the frequency of the two pairs of complex conjugate poles $p_{-}$ and $p_{+}$ in Eq. eqref:eq:pole_values.
For non-null rotational speeds, the two real zeros $z_r$ in Eq. eqref:eq:iff_zero_real induce a non-minimum phase behavior.
This can be seen in the Bode plot of the diagonal terms (Figure ref:fig:plant_iff_compare_rotating_speed) where the low frequency gain is no longer zero while the phase stays at $\SI{180}{\degree}$.
The low frequency gain of $\mathbf{G}_f$ increases with the rotational speed $\Omega$ as shown in Eq. eqref:eq:low_freq_gain_iff_plan.
#+name: eq:low_freq_gain_iff_plan
\begin{equation}
\lim_{\omega \to 0} \left| \mathbf{G}_f (j\omega) \right| = \begin{bmatrix}
\frac{\Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
0 & \frac{\Omega^2}{{\omega_0}^2 - \Omega^2}
\end{bmatrix}
\end{equation}
This can be explained as follows: a constant force $F_u$ induces a small displacement of the mass $d_u = \frac{F_u}{k - m\Omega^2}$, which increases the centrifugal force $m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u$ which is then measured by the force sensors.
#+name: fig:plant_iff_compare_rotating_speed
#+caption: Bode plot of the dynamics from a force actuator to its collocated force sensor ($f_u/F_u$, $f_v/F_v$) for several rotational speeds $\Omega$
#+attr_latex: :scale 0.95
[[file:figs/fig06.pdf]]
#+latex: \par
** Decentralized Integral Force Feedback with Pure Integrators :ignore:
<<sec:iff_pure_int>>
The two IFF controllers $K_{F}$ consist of a pure integrator as shown in Eq. eqref:eq:Kf_pure_int where $g$ is a scalar representing the gain of the controller.
#+name: eq:Kf_pure_int
\begin{equation}
\begin{aligned}
\mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\
K_{F}(s) &= g \cdot \frac{1}{s}
\end{aligned}
\end{equation}
In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (Figure ref:fig:root_locus_pure_iff) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously.
As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$.
The direction of increasing gain is indicated by arrows $\tikz[baseline=-0.6ex] \draw[-{Stealth[round]},line width=2pt] (0,0) -- (0.3,0);$.
#+name: fig:root_locus_pure_iff
#+caption: Root Locus: Evolution of the closed-loop poles with increasing controller gains $g$
#+attr_latex: :scale 1
[[file:figs/fig07.pdf]]
Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotational speed in non-null.
This can be seen in the Root Locus plot (Figure ref:fig:root_locus_pure_iff) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability.
Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator in $K_{F}$ and the finite gain of the plant (Figure ref:fig:plant_iff_compare_rotating_speed).
The control system is thus canceling the spring forces which makes the suspended platform no able to hold the payload against centrifugal forces, hence the instability.
In order to apply decentralized IFF to rotating platforms, two solutions are proposed to deal with this instability problem.
The first one consists of slightly modifying the control law (Section ref:sec:iff_hpf) while the second one consists of adding springs in parallel with the force sensors (Section ref:sec:iff_kp).
* Integral Force Feedback with High Pass Filter
<<sec:iff_hpf>>
** Modification of the Control Law :ignore:
As was explained in the previous section, the instability comes in part from the high gain at low frequency caused by the pure integrators.
In order to limit the low frequency controller gain, an High Pass Filter (HPF) can be added to the controller as shown in Eq. eqref:eq:IFF_LHF.
#+name: eq:IFF_LHF
\begin{equation}
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
\end{equation}
This is equivalent as to slightly shifting the controller pole to the left along the real axis.
This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator cite:preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans.
This is however not the case in this study as it will become clear in the next section.
#+latex: \par
** Feedback Analysis :ignore:
The loop gains, $K_F(s)$ times the direct dynamics $f_u/F_u$, with and without the added HPF are shown in Figure ref:fig:loop_gain_modified_iff.
The effect of the added HPF limits the low frequency gain as expected.
The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure ref:fig:root_locus_modified_iff.
With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain $g_\text{max}$ in Eq. eqref:eq:gmax_iff_hpf.
#+name: eq:gmax_iff_hpf
\begin{equation}
g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)
\end{equation}
It is interesting to note that $g_{\text{max}}$ also corresponds to the controller gain at which the low frequency loop gain (Figure ref:fig:loop_gain_modified_iff) reaches one.
#+name: fig:loop_gain_modified_iff
#+caption: Modification of the loop gain with the added HFP, $g = 2$, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
#+attr_latex: :scale 0.95
[[file:figs/fig08.pdf]]
#+name: fig:root_locus_modified_iff
#+caption: Modification of the Root Locus with the added HPF, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
#+attr_latex: :scale 1
[[file:figs/fig09.pdf]]
#+latex: \par
** Optimal Control Parameters :ignore:
Two parameters can be tuned for the modified controller in Eq. eqref:eq:IFF_LHF: the gain $g$ and the pole's location $\omega_i$.
The optimal values of $\omega_i$ and $g$ are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized.
In order to visualize how $\omega_i$ does affect the attainable damping, the Root Locus plots for several $\omega_i$ are displayed in Figure ref:fig:root_locus_wi_modified_iff.
It is shown that even though small $\omega_i$ seem to allow more damping to be added to the suspension modes, the control gain $g$ may be limited to small values due to Eq. eqref:eq:gmax_iff_hpf.
#+name: fig:root_locus_wi_modified_iff
#+caption: Root Locus for several HPF cut-off frequencies $\omega_i$, $\Omega = 0.1 \omega_0$
#+attr_latex: :scale 0.95
[[file:figs/fig10.pdf]]
In order to study this trade off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$.
The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:mod_iff_damping_wi).
#+name: fig:mod_iff_damping_wi
#+caption: Attainable damping ratio $\xi_\text{cl}$ as a function of $\omega_i/\omega_0$. Corresponding control gain $g_\text{opt}$ and $g_\text{max}$ are also shown
#+attr_latex: :scale 0.95
[[file:figs/fig11.pdf]]
Three regions can be observed:
- $\omega_i/\omega_0 < 0.02$: the added damping is limited by the maximum allowed control gain $g_{\text{max}}$
- $0.02 < \omega_i/\omega_0 < 0.2$: the attainable damping ratio is maximized and is reached for $g \approx 2$
- $0.2 < \omega_i/\omega_0$: the added damping decreases as $\omega_i/\omega_0$ increases.
* Integral Force Feedback with Parallel Springs
<<sec:iff_kp>>
** Stiffness in Parallel with the Force Sensor :ignore:
In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness induced by the gyroscopic effects.
Such springs are schematically shown in Figure ref:fig:system_parallel_springs where $k_a$ is the stiffness of the actuator and $k_p$ the stiffness in parallel with the actuator and force sensor.
Amplified piezoelectric stack actuators can be used for such purpose where a part of the piezoelectric stack is used as an actuator while the rest is used as a force sensor cite:souleille18_concep_activ_mount_space_applic.
The parallel stiffness $k_p$ then corresponds to the mechanical amplification structure.
#+name: fig:system_parallel_springs
#+caption: Studied system with additional springs in parallel with the actuators and force sensors
#+attr_latex: :scale 0.9
[[file:figs/fig12.pdf]]
#+latex: \par
** Effect of the Parallel Stiffness on the Plant Dynamics :ignore:
The forces measured by the two force sensors represented in Figure ref:fig:system_parallel_springs are described by Eq. eqref:eq:measured_force_kp.
#+name: eq:measured_force_kp
\begin{equation}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k_a)
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
\end{equation}
In order to keep the overall stiffness $k = k_a + k_p$ constant, thus not modifying the open-loop poles as $k_p$ is changed, a scalar parameter $\alpha$ ($0 \le \alpha < 1$) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in Eq. eqref:eq:kp_alpha.
#+name: eq:kp_alpha
\begin{equation}
k_p = \alpha k, \quad k_a = (1 - \alpha) k
\end{equation}
After the equations of motion derived and transformed in the Laplace domain, the transfer function matrix $\mathbf{G}_k$ in Eq. eqref:eq:Gk_mimo_tf is computed.
Its elements are shown in Eq. eqref:eq:Gk_diag and eqref:eq:Gk_off_diag.
#+name: eq:Gk_mimo_tf
\begin{equation}
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
\mathbf{G}_k
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
#+name: eq:Gk
\begin{subequations}
\begin{align}
& \mathbf{G}_{k}(1,1) = \mathbf{G}_{k}(2,2) = \dots \nonumber \\
& \quad {\scriptstyle \frac{\big( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \big) \big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big) + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2}{\big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big)^2 + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2} } \label{eq:Gk_diag} \\
& \mathbf{G}_{k}(1,2) = -\mathbf{G}_{k}(2,1) = \dots \nonumber \\
& \quad {\scriptscriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \label{eq:Gk_off_diag}
\end{align}
\end{subequations}
Comparing $\mathbf{G}_k$ in Eq. eqref:eq:Gk with $\mathbf{G}_f$ in Eq. eqref:eq:Gf shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed.
The two real zeros $z_r$ in Eq. eqref:eq:iff_zero_real that were inducing a non-minimum phase behavior are transformed into two complex conjugate zeros if the condition in Eq. eqref:eq:kp_cond_cc_zeros holds.
#+name: eq:kp_cond_cc_zeros
\begin{equation}
\alpha > \frac{\Omega^2}{{\omega_0}^2} \quad \Leftrightarrow \quad k_p > m \Omega^2
\end{equation}
Thus, if the added parallel stiffness $k_p$ is higher than the negative stiffness induced by centrifugal forces $m \Omega^2$, the dynamics from actuator to its collocated force sensor will show minimum phase behavior.
This is confirmed by the Bode plot in Figure ref:fig:plant_iff_kp.
Figure ref:fig:root_locus_iff_kp shows the Root Locus plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator as in Eq. eqref:eq:Kf_pure_int.
It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of IFF is recovered.
#+name: fig:plant_iff_kp
#+caption: Bode plot of $G_{k}(1,1) = f_u/F_u$ without parallel spring, with parallel spring stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$
#+attr_latex: :scale 0.95
[[file:figs/fig13.pdf]]
#+name: fig:root_locus_iff_kp
#+caption: Root Locus for IFF without parallel spring, with parallel spring stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$
#+attr_latex: :scale 0.95
[[file:figs/fig14.pdf]]
#+latex: \par
** Optimal Parallel Stiffness :ignore:
Even though the parallel stiffness $k_p$ has no impact on the open-loop poles (as the overall stiffness $k$ is kept constant), it has a large impact on the transmission zeros.
Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is foreseen to have a large impact on the attainable damping.
To study this effect, Root Locus plots for several parallel stiffnesses $k_p > m \Omega^2$ are shown in Figure ref:fig:root_locus_iff_kps.
The frequencies of the transmission zeros of the system are increasing with an increase of the parallel stiffness $k_p$ and the associated attainable damping is reduced.
Therefore, even though the parallel stiffness $k_p$ should be larger than $m \Omega^2$ for stability reasons, it should not be taken too large as this would limit the attainable damping.
This is confirmed by the Figure ref:fig:opt_damp_alpha where the attainable closed-loop damping ratio $\xi_{\text{cl}}$ and the associated optimal control gain $g_\text{opt}$ are computed as a function of $\alpha$.
#+name: fig:root_locus_iff_kps
#+caption: Comparison of the Root Locus plots for three parallel stiffnessses $k_p$
#+attr_latex: :scale 1
[[file:figs/fig15.pdf]]
#+name: fig:opt_damp_alpha
#+caption: Optimal damping ratio $\xi_\text{opt}$ and the corresponding optimal gain $g_\text{opt}$ as a function of $\alpha$
#+attr_latex: :scale 0.95
[[file:figs/fig16.pdf]]
* Comparison and Discussion
<<sec:comparison>>
** Introduction :ignore:
In order to overcome the instability issue of the classical IFF strategy when applied to rotating platforms, two modifications of IFF have been proposed in Sections ref:sec:iff_hpf and ref:sec:iff_kp.
These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility.
For the following comparisons, the cut-off frequency for the HPF is set to $\omega_i = 0.1 \omega_0$ and the stiffness of the parallel springs is set to $k_p = 5 m \Omega^2$ (corresponding to $\alpha = 0.05$).
These values are chosen based on the discussion about optimal parameters.
#+latex: \par
** Comparison of the Attainable Damping :ignore:
Figure ref:fig:comp_root_locus shows the Root Locus plots for the two proposed IFF modifications.
While the two pairs of complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not.
This means that the closed-loop behavior of both systems will differ when large control gains are used.
One can observe that the closed loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability.
This is not the case for the system where the controller is augmented with an HPF (in blue).
It is interesting to note that the maximum added damping is very similar for both techniques and is reached for the same control gain $g_\text{opt} \approx 2 \omega_0$.
#+name: fig:comp_root_locus
#+caption: Root Locus for the two proposed modifications of decentralized IFF, $\Omega = 0.1 \omega_0$
#+attr_latex: :scale 1
[[file:figs/fig17.pdf]]
#+latex: \par
** Comparison Transmissibility and Compliance :ignore:
The two proposed techniques are now compared in terms of closed-loop transmissibility and compliance.
The transmissibility is here defined as the transfer function from a displacement of the rotating stage along $\vec{i}_x$ to the displacement of the payload along the same direction.
It is used to characterize how much vibration is transmitted through the suspended platform to the payload.
The compliance describes the displacement response of the payload to external forces applied to it.
This is a useful metric when disturbances are directly applied to the payload.
It is here defined as the transfer function from external forces applied on the payload along $\vec{i}_x$ to the displacement of the payload along the same direction.
The two techniques are also compared with passive damping (Figure ref:fig:system) where the damping coefficient $c$ is tuned to critically damp the resonance when the rotating speed is null as shown in Eq. eqref:eq:critical_damp.
#+name: eq:critical_damp
\begin{equation}
c_\text{crit} = 2 \sqrt{k m}
\end{equation}
Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility (Figure ref:fig:comp_transmissibility) and compliance (Figure ref:fig:comp_compliance).
It is also confirmed that these two techniques can significantly damp the suspension modes.
#+name: fig:comp_transmissibility
#+caption: Comparison of the two proposed active damping techniques - transmissibility
#+attr_latex: :scale 1
[[file:figs/fig18.pdf]]
#+name: fig:comp_compliance
#+caption: Comparison of the two proposed active damping techniques - compliance
#+attr_latex: :scale 1
[[file:figs/fig19.pdf]]
On can see in Figure ref:fig:comp_transmissibility that the problem of the degradation of the transmissibility at high frequency when using passive damping techniques is overcome by the use of IFF.
The addition of the HPF or the use of the parallel stiffness also permits to limit the degradation of the compliance as compared with classical IFF (Figure ref:fig:comp_compliance).
* Conclusion
<<sec:conclusion>>
Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied to rotating platforms.
Two modifications of the classical IFF control have been proposed to overcome this issue.
The first modification concerns the controller and consists of adding an high pass filter to the pure integrators.
This is equivalent as to moving the controller pole to the left along the real axis.
This allows the closed loop system to be stable up to some value of the controller gain.
The second proposed modification concerns the mechanical system.
Additional springs are added in parallel with the actuators and force sensors.
It was shown that if the stiffness $k_p$ of the additional springs is larger than the negative stiffness $m \Omega^2$ induced by centrifugal forces, the classical decentralized IFF regains its unconditional stability property.
While having very different implementations, both proposed modifications are very similar when it comes to the attainable damping and the obtained closed loop system behavior.
Future work will focus on the experimental validation of the proposed IFF modifications.
* Data Availability
:PROPERTIES:
:UNNUMBERED: t
:END:
Matlab cite:matlab20 was used for this study.
The source code is available under a MIT License and archived in Zenodo cite:dehaeze20_activ_dampin_rotat_posit_platf.
* Acknowledgments
:PROPERTIES:
:UNNUMBERED: t
:END:
This research benefited from a FRIA grant (grant number: FC 31597) from the French Community of Belgium.
This paper is based on a paper previously presented at the ISMA conference cite:dehaeze20_activ_dampin_rotat_platf_integ_force_feedb.
* References :ignore:
:PROPERTIES:
:UNNUMBERED: t
:END:
\bibliographystyle{iopart-num}
\bibliography{ref}

BIN
journal/paper.pdf Normal file

Binary file not shown.

589
journal/paper.tex Normal file
View File

@ -0,0 +1,589 @@
% Created 2021-08-27 ven. 18:43
% Intended LaTeX compiler: pdflatex
\documentclass[10pt]{iopart}
\expandafter\let\csname equation*\endcsname\relax
\expandafter\let\csname endequation*\endcsname\relax
\usepackage{capt-of, subcaption}
\usepackage[colorlinks=true, allcolors=blue]{hyperref}
\usepackage{amsmath, amssymb, amsfonts, cases, bm}
\usepackage{algorithmic, graphicx, textcomp}
\usepackage{xcolor, import}
\usepackage[USenglish, english]{babel}
\usepackage{siunitx}
\usepackage{tikz}
\usetikzlibrary{shapes.misc,arrows,arrows.meta}
\usepackage[square,comma,sort&compress,numbers]{natbib}
\renewcommand{\bibsection}{\section*{References}}
\date{}
\title{}
\begin{document}
\title{Active damping of rotating platforms using integral force feedback}
\author{Thomas Dehaeze$^{1,3}$ and Christophe Collette$^{1,2}$}
\address{$^1$ Precision Mechatronics Laboratory, University of Liege, Belgium}
\address{$^2$ BEAMS Department, Free University of Brussels, Belgium}
\address{$^3$ European Synchrotron Radiation Facility, Grenoble, France}
\ead{tdehaeze@uliege.be}
\begin{abstract}
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
Conditions for stability and optimal parameters are derived.
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
\end{abstract}
\vspace{2pc}
\noindent{\it Keywords}: Active Damping, IFF
\submitto{{\it Engineering Research Express\/}}
\maketitle
% Two Columns output
\ioptwocol
\section{Introduction}
\label{sec:introduction}
There is an increasing need to reduce the undesirable vibration of sensitive equipment in many different fields such as in aerospace industry \cite{hanieh03_activ_stewar,hauge04_sensor_contr_space_based_six,souleille18_concep_activ_mount_space_applic}, semi conductor industry \cite{yoshioka01_activ_microv_isolat_system_hi}, microscopy \cite{lan08_activ_vibrat_isolat_long_range,fleming15_low_order_dampin_track_contr}, gravitational wave detectors \cite{matichard15_seism_isolat_advan_ligo} and particles accelerators \cite{collette10_activ_quadr_stabil_futur_linear_partic_collid,dehaeze18_sampl_stabil_for_tomog_exper}.
A common method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the vibrations above the frequency of the suspension modes \cite{reilly06_critic,poel10_explor_activ_hard_mount_vibrat}. \par
In order to further decrease the residual vibrations, active damping can be used for reducing the magnification of the response in the vicinity of the resonances \cite{collette11_review_activ_vibrat_isolat_strat}.
Many active damping techniques have been developed over the years such as Positive Position Feedback (PPF) \cite{lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc}, Integral Force Feedback (IFF) \cite{preumont91_activ} and Direct Velocity Feedback (DVF) \cite{karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb}. \par
In \cite{preumont92_activ_dampin_by_local_force}, the IFF control scheme has been proposed, where a force sensor, a force actuator and an integral controller are used to directly augment the damping of a mechanical system.
When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros which facilitate to guarantee the stability of the closed loop system \cite{preumont02_force_feedb_versus_accel_feedb}.
It was latter shown that this property holds for multiple collated actuator/sensor pairs \cite{preumont08_trans_zeros_struc_contr_with}. \par
The main advantages of IFF over other active damping techniques are the guaranteed stability even in presence of flexible dynamics, good performances and robustness properties \cite{preumont02_force_feedb_versus_accel_feedb}. \par
Several improvements of the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping \cite{teo15_optim_integ_force_feedb_activ_vibrat_contr} or adding an high pass filter to recover the loss of compliance at low frequency \cite{chesne16_enhan_dampin_flexib_struc_using_force_feedb}.
Recently, an \(\mathcal{H}_\infty\) optimization criterion has been used to derive optimal gains for the IFF controller \cite{zhao19_optim_integ_force_feedb_contr}. \par
However, when the platform is rotating, gyroscopic effects alter the system dynamics and IFF cannot be applied as is.
The purpose of this paper is to study how the IFF strategy can be adapted to deal with these gyroscopic effects. \par
The paper is structured as follows.
Section \ref{sec:dynamics} presents a simple model of a rotating suspended platform that will be used throughout this study.
Section \ref{sec:iff} explains how the unconditional stability of IFF is lost due to gyroscopic effects induced by the rotation.
Section \ref{sec:iff_hpf} suggests a simple modification of the control law such that damping can be added to the suspension modes in a robust way.
Section \ref{sec:iff_kp} proposes to add springs in parallel with the force sensors to regain the unconditional stability of IFF.
Section \ref{sec:comparison} compares both proposed modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
\section{Dynamics of Rotating Platforms}
\label{sec:dynamics}
In order to study how the rotation affects the use of IFF, a model of a suspended platform on top of a rotating stage is used.
Figure \ref{fig:system} represents a schematic of the model which is the simplest in which gyroscopic forces can be studied.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.9]{figs/fig01.pdf}
\caption{\label{fig:system}Schematic of the studied system}
\end{figure}
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in \(\si{\radian\per\s}\).
The suspended platform consists of two orthogonal actuators each represented by three elements in parallel: a spring with a stiffness \(k\) in \(\si{\newton\per\meter}\), a dashpot with a damping coefficient \(c\) in \(\si{\newton\per(\meter\per\second)^{-1}}\) and an ideal force source \(F_u, F_v\).
A payload with a mass \(m\) in \(\si{\kilo\gram}\), representing the sensitive equipment, is mounted on the (rotating) suspended platform.
Two reference frames are used: an inertial frame \((\vec{i}_x, \vec{i}_y, \vec{i}_z)\) and a uniform rotating frame \((\vec{i}_u, \vec{i}_v, \vec{i}_w)\) rigidly fixed on top of the rotating stage with \(\vec{i}_w\) aligned with the rotation axis.
The position of the payload is represented by \((d_u, d_v, 0)\) expressed in the rotating frame.
\par
To obtain the equations of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used:
\begin{equation}
\label{eq:lagrangian_equations}
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
\end{equation}
with \(L = T - V\) the Lagrangian, \(T\) the kinetic coenergy, \(V\) the potential energy, \(D\) the dissipation function, and \(Q_i\) the generalized force associated with the generalized variable \(\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}\).
The equation of motion corresponding to the constant rotation along \(\vec{i}_w\) is disregarded as this motion is considered to be imposed by the rotation stage.
\begin{equation}
\label{eq:energy_functions_lagrange}
\begin{aligned}
T &= \frac{1}{2} m \left( ( \dot{d}_u - \Omega d_v )^2 + ( \dot{d}_v + \Omega d_u )^2 \right), \\
V &= \frac{1}{2} k \big( {d_u}^2 + {d_v}^2 \big), \ Q_1 = F_u, \\
D &= \frac{1}{2} c \big( \dot{d}_u{}^2 + \dot{d}_v{}^2 \big), \ Q_2 = F_v
\end{aligned}
\end{equation}
Substituting Eq. \eqref{eq:energy_functions_lagrange} into Eq. \eqref{eq:lagrangian_equations} for both generalized coordinates gives two coupled differential equations \eqref{eq:eom_coupled_1} and \eqref{eq:eom_coupled_2}.
\begin{subequations}
\label{eq:eom_coupled}
\begin{align}
m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega^2 ) d_u &= F_u + 2 m \Omega \dot{d}_v \label{eq:eom_coupled_1} \\
m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega^2}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}} \label{eq:eom_coupled_2}
\end{align}
\end{subequations}
The uniform rotation of the system induces two gyroscopic effects as shown in Eq. \eqref{eq:eom_coupled}:
\begin{itemize}
\item Centrifugal forces: that can been seen as an added negative stiffness \(- m \Omega^2\) along \(\vec{i}_u\) and \(\vec{i}_v\)
\item Coriolis Forces: that adds coupling between the two orthogonal directions.
\end{itemize}
One can verify that without rotation (\(\Omega = 0\)) the system becomes equivalent to two uncoupled one degree of freedom mass-spring-damper systems.
\par
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are converted into the Laplace domain and the \(2 \times 2\) transfer function matrix \(\mathbf{G}_d\) from \(\begin{bmatrix}F_u & F_v\end{bmatrix}\) to \(\begin{bmatrix}d_u & d_v\end{bmatrix}\) in Eq. \eqref{eq:Gd_mimo_tf} is obtained.
Its elements are shown in Eq. \eqref{eq:Gd_indiv_el}.
\begin{equation}
\label{eq:Gd_mimo_tf}
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
\begin{subequations}
\label{eq:Gd_indiv_el}
\begin{align}
& \mathbf{G}_{d}(1,1) = \mathbf{G}_{d}(2,2) = \dots \nonumber \\
& \quad {\frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}} \\
& \mathbf{G}_{d}(1,2) = -\mathbf{G}_{d}(1,2) = \dots \nonumber \\
& \quad {\frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}}
\end{align}
\end{subequations}
To simplify the analysis, the undamped natural frequency \(\omega_0\) and the damping ratio \(\xi\) are used as in Eq. \eqref{eq:xi_and_omega}.
\begin{equation}
\label{eq:xi_and_omega}
\omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}}
\end{equation}
The elements of transfer function matrix \(\mathbf{G}_d\) are now describe by Eq. \eqref{eq:Gd_w0_xi_k}.
\begin{subequations}
\label{eq:Gd_w0_xi_k}
\begin{align}
\mathbf{G}_{d}(1,1) &= {\scriptstyle \frac{\frac{1}{k} \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}} \\
\mathbf{G}_{d}(1,2) &= {\scriptstyle \frac{\frac{1}{k} \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}}
\end{align}
\end{subequations}
For all further numerical analysis in this study, we consider \(\omega_0 = \SI{1}{\radian\per\second}\), \(k = \SI{1}{\newton\per\meter}\) and \(\xi = 0.025 = \SI{2.5}{\percent}\).
Even though no system with such parameters will be encountered in practice, conclusions can be drawn relative to these parameters such that they can be generalized to any other set of parameters.
\par
The poles of \(\mathbf{G}_d\) are the complex solutions \(p\) of Eq. \eqref{eq:poles}.
\begin{equation}
\label{eq:poles}
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
\end{equation}
Supposing small damping (\(\xi \ll 1\)), two pairs of complex conjugate poles are obtained as shown in Eq. \eqref{eq:pole_values}.
\begin{subequations}
\label{eq:pole_values}
\begin{align}
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right)
\end{align}
\end{subequations}
The real and complex parts of these two pairs of complex conjugate poles are represented in Figure \ref{fig:campbell_diagram} as a function of the rotational speed \(\Omega\).
As the rotational speed increases, \(p_{+}\) goes to higher frequencies and \(p_{-}\) goes to lower frequencies.
The system becomes unstable for \(\Omega > \omega_0\) as the real part of \(p_{-}\) is positive.
Physically, the negative stiffness term \(-m\Omega^2\) induced by centrifugal forces exceeds the spring stiffness \(k\).
In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are assumed (\(\Omega < \omega_0\)).
\begin{figure}[htbp]
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig02a.pdf}
\caption{\label{fig:campbell_diagram_real} Real Part}
\end{subfigure}
\hfill
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig02b.pdf}
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
\end{subfigure}
\hfill
\caption{\label{fig:campbell_diagram}Campbell diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed \(\Omega\)}
\centering
\end{figure}
Looking at the transfer function matrix \(\mathbf{G}_d\) in Eq. \eqref{eq:Gd_w0_xi_k}, one can see that the two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite.
The bode plot of these two terms are shown in Figure \ref{fig:plant_compare_rotating_speed} for several rotational speeds \(\Omega\).
These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as \(\Omega\) increases.
For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p_{-}\) becomes unstable.
\begin{figure}[htbp]
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig03a.pdf}
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms}
\end{subfigure}
\hfill
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig03b.pdf}
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms}
\end{subfigure}
\hfill
\caption{\label{fig:plant_compare_rotating_speed}Bode plots for \(\mathbf{G}_d\) for several rotational speed \(\Omega\)}
\centering
\end{figure}
\section{Decentralized Integral Force Feedback}
\label{sec:iff}
In order to apply IFF to the rotating system, force sensors are added in series with the two actuators (Figure \ref{fig:system_iff}).
As this study focuses on decentralized control, two identical controllers \(K_F\) are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
The control diagram is schematically shown in Figure \ref{fig:control_diagram_iff}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.9]{figs/fig04.pdf}
\caption{\label{fig:system_iff}System with added force sensor in series with the actuators and with a decentralized IFF architecture}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig05.pdf}
\caption{\label{fig:control_diagram_iff}Control diagram for decentralized IFF}
\end{figure}
\par
The forces \(\begin{bmatrix}f_u & f_v\end{bmatrix}\) measured by the two force sensors represented in Figure \ref{fig:system_iff} are described by Eq. \eqref{eq:measured_force}.
\begin{equation}
\label{eq:measured_force}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
\end{equation}
The transfer function matrix \(\mathbf{G}_{f}\) from actuator forces to measured forces in Eq. \eqref{eq:Gf_mimo_tf} can be obtained by inserting Eq. \eqref{eq:Gd_w0_xi_k} into Eq. \eqref{eq:measured_force}.
Its elements are shown in Eq. \eqref{eq:Gf_indiv_el}.
\begin{equation}
\label{eq:Gf_mimo_tf}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \mathbf{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
\begin{subequations}
\label{eq:Gf_indiv_el}
\label{eq:Gf}
\begin{align}
& \mathbf{G}_{f}(1,1) = \mathbf{G}_{f}(2,2) = \dots \nonumber \\
& \quad {\scriptstyle \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \label{eq:Gf_diag_tf} \\
& \mathbf{G}_{f}(1,2) = -\mathbf{G}_{f}(2,1) = \dots \nonumber \\
& \quad {\scriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \label{eq:Gf_off_diag_tf}
\end{align}
\end{subequations}
The zeros of the diagonal terms of \(\mathbf{G}_f\) in Eq. \eqref{eq:Gf_diag_tf} are computed, and neglecting the damping for simplicity, two complex conjugated poles \(z_{c}\) are obtained in Eq. \eqref{eq:iff_zero_cc}, and two real zeros \(z_{r}\) in Eq. \eqref{eq:iff_zero_real}.
\begin{subequations}
\begin{align}
z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
\end{align}
\end{subequations}
It is interesting to see that the frequency of the pair of complex conjugate zeros \(z_c\) in Eq. \eqref{eq:iff_zero_cc} always lies between the frequency of the two pairs of complex conjugate poles \(p_{-}\) and \(p_{+}\) in Eq. \eqref{eq:pole_values}.
For non-null rotational speeds, the two real zeros \(z_r\) in Eq. \eqref{eq:iff_zero_real} induce a non-minimum phase behavior.
This can be seen in the Bode plot of the diagonal terms (Figure \ref{fig:plant_iff_compare_rotating_speed}) where the low frequency gain is no longer zero while the phase stays at \(\SI{180}{\degree}\).
The low frequency gain of \(\mathbf{G}_f\) increases with the rotational speed \(\Omega\) as shown in Eq. \eqref{eq:low_freq_gain_iff_plan}.
\begin{equation}
\label{eq:low_freq_gain_iff_plan}
\lim_{\omega \to 0} \left| \mathbf{G}_f (j\omega) \right| = \begin{bmatrix}
\frac{\Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
0 & \frac{\Omega^2}{{\omega_0}^2 - \Omega^2}
\end{bmatrix}
\end{equation}
This can be explained as follows: a constant force \(F_u\) induces a small displacement of the mass \(d_u = \frac{F_u}{k - m\Omega^2}\), which increases the centrifugal force \(m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u\) which is then measured by the force sensors.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig06.pdf}
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of the dynamics from a force actuator to its collocated force sensor (\(f_u/F_u\), \(f_v/F_v\)) for several rotational speeds \(\Omega\)}
\end{figure}
\par
\label{sec:iff_pure_int}
The two IFF controllers \(K_{F}\) consist of a pure integrator as shown in Eq. \eqref{eq:Kf_pure_int} where \(g\) is a scalar representing the gain of the controller.
\begin{equation}
\label{eq:Kf_pure_int}
\begin{aligned}
\mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\
K_{F}(s) &= g \cdot \frac{1}{s}
\end{aligned}
\end{equation}
In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (Figure \ref{fig:root_locus_pure_iff}) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain \(g\) varies from \(0\) to \(\infty\) for the two controllers \(K_{F}\) simultaneously.
As explained in \cite{preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr}, the closed-loop poles start at the open-loop poles (shown by \(\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};\)) for \(g = 0\) and coincide with the transmission zeros (shown by \(\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];\)) as \(g \to \infty\).
The direction of increasing gain is indicated by arrows \(\tikz[baseline=-0.6ex] \draw[-{Stealth[round]},line width=2pt] (0,0) -- (0.3,0);\).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig07.pdf}
\caption{\label{fig:root_locus_pure_iff}Root Locus: Evolution of the closed-loop poles with increasing controller gains \(g\)}
\end{figure}
Whereas collocated IFF is usually associated with unconditional stability \cite{preumont91_activ}, this property is lost due to gyroscopic effects as soon as the rotational speed in non-null.
This can be seen in the Root Locus plot (Figure \ref{fig:root_locus_pure_iff}) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability.
Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator in \(K_{F}\) and the finite gain of the plant (Figure \ref{fig:plant_iff_compare_rotating_speed}).
The control system is thus canceling the spring forces which makes the suspended platform no able to hold the payload against centrifugal forces, hence the instability.
In order to apply decentralized IFF to rotating platforms, two solutions are proposed to deal with this instability problem.
The first one consists of slightly modifying the control law (Section \ref{sec:iff_hpf}) while the second one consists of adding springs in parallel with the force sensors (Section \ref{sec:iff_kp}).
\section{Integral Force Feedback with High Pass Filter}
\label{sec:iff_hpf}
As was explained in the previous section, the instability comes in part from the high gain at low frequency caused by the pure integrators.
In order to limit the low frequency controller gain, an High Pass Filter (HPF) can be added to the controller as shown in Eq. \eqref{eq:IFF_LHF}.
\begin{equation}
\label{eq:IFF_LHF}
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
\end{equation}
This is equivalent as to slightly shifting the controller pole to the left along the real axis.
This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator \cite{preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans}.
This is however not the case in this study as it will become clear in the next section.
\par
The loop gains, \(K_F(s)\) times the direct dynamics \(f_u/F_u\), with and without the added HPF are shown in Figure \ref{fig:loop_gain_modified_iff}.
The effect of the added HPF limits the low frequency gain as expected.
The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure \ref{fig:root_locus_modified_iff}.
With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain \(g_\text{max}\) in Eq. \eqref{eq:gmax_iff_hpf}.
\begin{equation}
\label{eq:gmax_iff_hpf}
g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)
\end{equation}
It is interesting to note that \(g_{\text{max}}\) also corresponds to the controller gain at which the low frequency loop gain (Figure \ref{fig:loop_gain_modified_iff}) reaches one.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig08.pdf}
\caption{\label{fig:loop_gain_modified_iff}Modification of the loop gain with the added HFP, \(g = 2\), \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig09.pdf}
\caption{\label{fig:root_locus_modified_iff}Modification of the Root Locus with the added HPF, \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
\end{figure}
\par
Two parameters can be tuned for the modified controller in Eq. \eqref{eq:IFF_LHF}: the gain \(g\) and the pole's location \(\omega_i\).
The optimal values of \(\omega_i\) and \(g\) are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized.
In order to visualize how \(\omega_i\) does affect the attainable damping, the Root Locus plots for several \(\omega_i\) are displayed in Figure \ref{fig:root_locus_wi_modified_iff}.
It is shown that even though small \(\omega_i\) seem to allow more damping to be added to the suspension modes, the control gain \(g\) may be limited to small values due to Eq. \eqref{eq:gmax_iff_hpf}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig10.pdf}
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\), \(\Omega = 0.1 \omega_0\)}
\end{figure}
In order to study this trade off, the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) is computed as a function of \(\omega_i/\omega_0\).
The gain \(g_{\text{opt}}\) at which this maximum damping is obtained is also displayed and compared with the gain \(g_{\text{max}}\) at which the system becomes unstable (Figure \ref{fig:mod_iff_damping_wi}).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig11.pdf}
\caption{\label{fig:mod_iff_damping_wi}Attainable damping ratio \(\xi_\text{cl}\) as a function of \(\omega_i/\omega_0\). Corresponding control gain \(g_\text{opt}\) and \(g_\text{max}\) are also shown}
\end{figure}
Three regions can be observed:
\begin{itemize}
\item \(\omega_i/\omega_0 < 0.02\): the added damping is limited by the maximum allowed control gain \(g_{\text{max}}\)
\item \(0.02 < \omega_i/\omega_0 < 0.2\): the attainable damping ratio is maximized and is reached for \(g \approx 2\)
\item \(0.2 < \omega_i/\omega_0\): the added damping decreases as \(\omega_i/\omega_0\) increases.
\end{itemize}
\section{Integral Force Feedback with Parallel Springs}
\label{sec:iff_kp}
In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness induced by the gyroscopic effects.
Such springs are schematically shown in Figure \ref{fig:system_parallel_springs} where \(k_a\) is the stiffness of the actuator and \(k_p\) the stiffness in parallel with the actuator and force sensor.
Amplified piezoelectric stack actuators can be used for such purpose where a part of the piezoelectric stack is used as an actuator while the rest is used as a force sensor \cite{souleille18_concep_activ_mount_space_applic}.
The parallel stiffness \(k_p\) then corresponds to the mechanical amplification structure.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.9]{figs/fig12.pdf}
\caption{\label{fig:system_parallel_springs}Studied system with additional springs in parallel with the actuators and force sensors}
\end{figure}
\par
The forces measured by the two force sensors represented in Figure \ref{fig:system_parallel_springs} are described by Eq. \eqref{eq:measured_force_kp}.
\begin{equation}
\label{eq:measured_force_kp}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k_a)
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
\end{equation}
In order to keep the overall stiffness \(k = k_a + k_p\) constant, thus not modifying the open-loop poles as \(k_p\) is changed, a scalar parameter \(\alpha\) (\(0 \le \alpha < 1\)) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in Eq. \eqref{eq:kp_alpha}.
\begin{equation}
\label{eq:kp_alpha}
k_p = \alpha k, \quad k_a = (1 - \alpha) k
\end{equation}
After the equations of motion derived and transformed in the Laplace domain, the transfer function matrix \(\mathbf{G}_k\) in Eq. \eqref{eq:Gk_mimo_tf} is computed.
Its elements are shown in Eq. \eqref{eq:Gk_diag} and \eqref{eq:Gk_off_diag}.
\begin{equation}
\label{eq:Gk_mimo_tf}
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
\mathbf{G}_k
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
\begin{subequations}
\label{eq:Gk}
\begin{align}
& \mathbf{G}_{k}(1,1) = \mathbf{G}_{k}(2,2) = \dots \nonumber \\
& \quad {\scriptstyle \frac{\big( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \big) \big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big) + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2}{\big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big)^2 + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2} } \label{eq:Gk_diag} \\
& \mathbf{G}_{k}(1,2) = -\mathbf{G}_{k}(2,1) = \dots \nonumber \\
& \quad {\scriptscriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \label{eq:Gk_off_diag}
\end{align}
\end{subequations}
Comparing \(\mathbf{G}_k\) in Eq. \eqref{eq:Gk} with \(\mathbf{G}_f\) in Eq. \eqref{eq:Gf} shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed.
The two real zeros \(z_r\) in Eq. \eqref{eq:iff_zero_real} that were inducing a non-minimum phase behavior are transformed into two complex conjugate zeros if the condition in Eq. \eqref{eq:kp_cond_cc_zeros} holds.
\begin{equation}
\label{eq:kp_cond_cc_zeros}
\alpha > \frac{\Omega^2}{{\omega_0}^2} \quad \Leftrightarrow \quad k_p > m \Omega^2
\end{equation}
Thus, if the added parallel stiffness \(k_p\) is higher than the negative stiffness induced by centrifugal forces \(m \Omega^2\), the dynamics from actuator to its collocated force sensor will show minimum phase behavior.
This is confirmed by the Bode plot in Figure \ref{fig:plant_iff_kp}.
Figure \ref{fig:root_locus_iff_kp} shows the Root Locus plots for \(k_p = 0\), \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\) when \(K_F\) is a pure integrator as in Eq. \eqref{eq:Kf_pure_int}.
It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of IFF is recovered.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig13.pdf}
\caption{\label{fig:plant_iff_kp}Bode plot of \(G_{k}(1,1) = f_u/F_u\) without parallel spring, with parallel spring stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig14.pdf}
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel spring stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
\end{figure}
\par
Even though the parallel stiffness \(k_p\) has no impact on the open-loop poles (as the overall stiffness \(k\) is kept constant), it has a large impact on the transmission zeros.
Moreover, as the attainable damping is generally proportional to the distance between poles and zeros \cite{preumont18_vibrat_contr_activ_struc_fourt_edition}, the parallel stiffness \(k_p\) is foreseen to have a large impact on the attainable damping.
To study this effect, Root Locus plots for several parallel stiffnesses \(k_p > m \Omega^2\) are shown in Figure \ref{fig:root_locus_iff_kps}.
The frequencies of the transmission zeros of the system are increasing with an increase of the parallel stiffness \(k_p\) and the associated attainable damping is reduced.
Therefore, even though the parallel stiffness \(k_p\) should be larger than \(m \Omega^2\) for stability reasons, it should not be taken too large as this would limit the attainable damping.
This is confirmed by the Figure \ref{fig:opt_damp_alpha} where the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) and the associated optimal control gain \(g_\text{opt}\) are computed as a function of \(\alpha\).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig15.pdf}
\caption{\label{fig:root_locus_iff_kps}Comparison of the Root Locus plots for three parallel stiffnessses \(k_p\)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig16.pdf}
\caption{\label{fig:opt_damp_alpha}Optimal damping ratio \(\xi_\text{opt}\) and the corresponding optimal gain \(g_\text{opt}\) as a function of \(\alpha\)}
\end{figure}
\section{Comparison and Discussion}
\label{sec:comparison}
In order to overcome the instability issue of the classical IFF strategy when applied to rotating platforms, two modifications of IFF have been proposed in Sections \ref{sec:iff_hpf} and \ref{sec:iff_kp}.
These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility.
For the following comparisons, the cut-off frequency for the HPF is set to \(\omega_i = 0.1 \omega_0\) and the stiffness of the parallel springs is set to \(k_p = 5 m \Omega^2\) (corresponding to \(\alpha = 0.05\)).
These values are chosen based on the discussion about optimal parameters.
\par
Figure \ref{fig:comp_root_locus} shows the Root Locus plots for the two proposed IFF modifications.
While the two pairs of complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not.
This means that the closed-loop behavior of both systems will differ when large control gains are used.
One can observe that the closed loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability.
This is not the case for the system where the controller is augmented with an HPF (in blue).
It is interesting to note that the maximum added damping is very similar for both techniques and is reached for the same control gain \(g_\text{opt} \approx 2 \omega_0\).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig17.pdf}
\caption{\label{fig:comp_root_locus}Root Locus for the two proposed modifications of decentralized IFF, \(\Omega = 0.1 \omega_0\)}
\end{figure}
\par
The two proposed techniques are now compared in terms of closed-loop transmissibility and compliance.
The transmissibility is here defined as the transfer function from a displacement of the rotating stage along \(\vec{i}_x\) to the displacement of the payload along the same direction.
It is used to characterize how much vibration is transmitted through the suspended platform to the payload.
The compliance describes the displacement response of the payload to external forces applied to it.
This is a useful metric when disturbances are directly applied to the payload.
It is here defined as the transfer function from external forces applied on the payload along \(\vec{i}_x\) to the displacement of the payload along the same direction.
The two techniques are also compared with passive damping (Figure \ref{fig:system}) where the damping coefficient \(c\) is tuned to critically damp the resonance when the rotating speed is null as shown in Eq. \eqref{eq:critical_damp}.
\begin{equation}
\label{eq:critical_damp}
c_\text{crit} = 2 \sqrt{k m}
\end{equation}
Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility (Figure \ref{fig:comp_transmissibility}) and compliance (Figure \ref{fig:comp_compliance}).
It is also confirmed that these two techniques can significantly damp the suspension modes.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig18.pdf}
\caption{\label{fig:comp_transmissibility}Comparison of the two proposed active damping techniques - transmissibility}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig19.pdf}
\caption{\label{fig:comp_compliance}Comparison of the two proposed active damping techniques - compliance}
\end{figure}
On can see in Figure \ref{fig:comp_transmissibility} that the problem of the degradation of the transmissibility at high frequency when using passive damping techniques is overcome by the use of IFF.
The addition of the HPF or the use of the parallel stiffness also permits to limit the degradation of the compliance as compared with classical IFF (Figure \ref{fig:comp_compliance}).
\section{Conclusion}
\label{sec:conclusion}
Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied to rotating platforms.
Two modifications of the classical IFF control have been proposed to overcome this issue.
The first modification concerns the controller and consists of adding an high pass filter to the pure integrators.
This is equivalent as to moving the controller pole to the left along the real axis.
This allows the closed loop system to be stable up to some value of the controller gain.
The second proposed modification concerns the mechanical system.
Additional springs are added in parallel with the actuators and force sensors.
It was shown that if the stiffness \(k_p\) of the additional springs is larger than the negative stiffness \(m \Omega^2\) induced by centrifugal forces, the classical decentralized IFF regains its unconditional stability property.
While having very different implementations, both proposed modifications are very similar when it comes to the attainable damping and the obtained closed loop system behavior.
Future work will focus on the experimental validation of the proposed IFF modifications.
\section*{Data Availability}
Matlab \cite{matlab20} was used for this study.
The source code is available under a MIT License and archived in Zenodo \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
\section*{Acknowledgments}
This research benefited from a FRIA grant (grant number: FC 31597) from the French Community of Belgium.
This paper is based on a paper previously presented at the ISMA conference \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb}.
\bibliographystyle{iopart-num}
\bibliography{ref}
\end{document}

577
journal/paper_new.tex Normal file
View File

@ -0,0 +1,577 @@
% Created 2021-01-06 mer. 10:43
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, final]{iopart}
\expandafter\let\csname equation*\endcsname\relax
\expandafter\let\csname endequation*\endcsname\relax
\usepackage{capt-of, subcaption}
\usepackage{hyperref}
\usepackage{amsmath, amssymb, amsfonts, cases, bm}
\usepackage{algorithmic, graphicx, textcomp}
\usepackage{xcolor, import}
\usepackage[USenglish, english]{babel}
\usepackage{siunitx}
\usepackage{tikz}
\usetikzlibrary{shapes.misc,arrows,arrows.meta}
\date{}
\title{}
\hypersetup{
pdfauthor={Thomas Dehaeze},
pdftitle={},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 27.1 (Org mode 9.5)},
pdflang={English}}
\begin{document}
\title{Active damping of rotating platforms using integral force feedback}
\author{Thomas Dehaeze$^{1,3}$ and Christophe Collette$^{1,2}$}
\address{$^1$ Precision Mechatronics Laboratory, University of Liege, Belgium}
\address{$^2$ BEAMS Department, Free University of Brussels, Belgium}
\address{$^3$ European Synchrotron Radiation Facility, Grenoble, France}
\ead{tdehaeze@uliege.be}
\begin{abstract}
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
Conditions for stability and optimal parameters are derived.
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
\end{abstract}
\vspace{2pc}
\noindent{\it Keywords}: Active Damping, IFF
\submitto{\SMS}
\maketitle
% \ioptwocol
\section{Introduction}
\label{sec:org685b7b9}
\label{sec:introduction}
There is an increasing need to reduce the undesirable vibration of many sensitive equipment.
A common method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the vibrations above the frequency of the suspension modes.
In order to further decrease the residual vibrations, active damping can be used for reducing the magnification of the response in the vicinity of the resonances.
In \cite{preumont92_activ_dampin_by_local_force}, the Integral Force Feedback (IFF) control scheme has been proposed, where a force sensor, a force actuator and an integral controller are used to directly augment the damping of a mechanical system.
When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros which facilitate to guarantee the stability of the closed loop system \cite{preumont02_force_feedb_versus_accel_feedb}.
However, when the platform is rotating, gyroscopic effects alter the system dynamics and IFF cannot be applied as is.
The purpose of this paper is to study how the IFF strategy can be adapted to deal with these Gyroscopic effects.
The paper is structured as follows.
Section \ref{sec:dynamics} presents a simple model of a rotating suspended platform that will be used throughout this study.
Section \ref{sec:iff} explains how the unconditional stability of IFF is lost due to Gyroscopic effects induced by the rotation.
Section \ref{sec:iff_hpf} suggests a simple modification of the control law such that damping can be added to the suspension modes in a robust way.
Section \ref{sec:iff_kp} proposes to add springs in parallel with the force sensors to regain the unconditional stability of IFF.
Section \ref{sec:comparison} compares both proposed modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
\section{Dynamics of Rotating Platforms}
\label{sec:orgae5250d}
\label{sec:dynamics}
In order to study how the rotation affects the use of IFF, a model of a suspended platform on top of a rotating stage is used.
Figure \ref{fig:system} represents a schematic of the model which is the simplest in which gyroscopic forces can be studied.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.9]{figs/fig01.pdf}
\caption{\label{fig:system}Schematic of the studied System}
\end{figure}
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in \(\si{\radian\per\s}\).
The suspended platform consists of two orthogonal actuators each represented by three elements in parallel: a spring with a stiffness \(k\) in \(\si{\newton\per\meter}\), a dashpot with a damping coefficient \(c\) in \(\si{\newton\per(\meter\per\second)^{-1}}\) and an ideal force source \(F_u, F_v\).
A payload with a mass \(m\) in \(\si{\kilo\gram}\), representing the sensitive equipment, is mounted on the (rotating) suspended platform.
Two reference frames are used: an inertial frame \((\vec{i}_x, \vec{i}_y, \vec{i}_z)\) and a uniform rotating frame \((\vec{i}_u, \vec{i}_v, \vec{i}_w)\) rigidly fixed on top of the rotating stage with \(\vec{i}_w\) aligned with the rotation axis.
The position of the payload is represented by \((d_u, d_v, 0)\) expressed in the rotating frame.
\par
To obtain the equations of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used:
\begin{equation}
\label{eq:lagrangian_equations}
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
\end{equation}
with \(L = T - V\) the Lagrangian, \(T\) the kinetic coenergy, \(V\) the potential energy, \(D\) the dissipation function, and \(Q_i\) the generalized force associated with the generalized variable \(\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}\).
The equation of motion corresponding to the constant rotation along \(\vec{i}_w\) is disregarded as this motion is considered to be imposed by the rotation stage.
\begin{equation}
\label{eq:energy_functions_lagrange}
\begin{aligned}
T &= \frac{1}{2} m \left( ( \dot{d}_u - \Omega d_v )^2 + ( \dot{d}_v + \Omega d_u )^2 \right), \\
V &= \frac{1}{2} k \big( {d_u}^2 + {d_v}^2 \big), \ Q_1 = F_u, \\
D &= \frac{1}{2} c \big( \dot{d}_u{}^2 + \dot{d}_v{}^2 \big), \ Q_2 = F_v
\end{aligned}
\end{equation}
Substituting Eq. \eqref{eq:energy_functions_lagrange} into Eq. \eqref{eq:lagrangian_equations} for both generalized coordinates gives two coupled differential equations \eqref{eq:eom_coupled_1} and \eqref{eq:eom_coupled_2}.
\begin{subequations}
\label{eq:eom_coupled}
\begin{align}
m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega^2 ) d_u &= F_u + 2 m \Omega \dot{d}_v \label{eq:eom_coupled_1} \\
m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega^2}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}} \label{eq:eom_coupled_2}
\end{align}
\end{subequations}
The uniform rotation of the system induces two Gyroscopic effects as shown in Eq. \eqref{eq:eom_coupled}:
\begin{itemize}
\item Centrifugal forces: that can been seen as an added negative stiffness \(- m \Omega^2\) along \(\vec{i}_u\) and \(\vec{i}_v\)
\item Coriolis Forces: that adds coupling between the two orthogonal directions
\end{itemize}
One can verify that without rotation (\(\Omega = 0\)) the system becomes equivalent to two uncoupled one degree of freedom mass-spring-damper systems.
\par
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are converted into the Laplace domain and the \(2 \times 2\) transfer function matrix \(\mathbf{G}_d\) from \(\begin{bmatrix}F_u & F_v\end{bmatrix}\) to \(\begin{bmatrix}d_u & d_v\end{bmatrix}\) in Eq. \eqref{eq:Gd_mimo_tf} is obtained.
Its elements are shown in Eq. \eqref{eq:Gd_indiv_el}.
\begin{equation}
\label{eq:Gd_mimo_tf}
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
\begin{subequations}
\label{eq:Gd_indiv_el}
\begin{align}
\mathbf{G}_{d}(1,1) &= {\frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}} \\
&= \mathbf{G}_{d}(2,2) \nonumber \\
\mathbf{G}_{d}(1,2) &= {\frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}} \\
&= -\mathbf{G}_{d}(1,2) \nonumber
\end{align}
\end{subequations}
To simplify the analysis, the undamped natural frequency \(\omega_0\) and the damping ratio \(\xi\) are used
\begin{equation}
\omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}}
\end{equation}
The transfer function matrix \(\mathbf{G}_d\) becomes equal to
\begin{subequations}
\label{eq:Gd_w0_xi_k}
\begin{align}
\mathbf{G}_{d}(1,1) &= \frac{\frac{1}{k} \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
\mathbf{G}_{d}(1,2) &= \frac{\frac{1}{k} \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
\end{align}
\end{subequations}
For all further numerical analysis in this study, we consider \(\omega_0 = \SI{1}{\radian\per\second}\), \(k = \SI{1}{\newton\per\meter}\) and \(\xi = 0.025 = \SI{2.5}{\percent}\).
Even though no system with such parameters will be encountered in practice, conclusions can be drawn relative to these parameters such that they can be generalized to any other set of parameters.
\par
The poles of \(\mathbf{G}_d\) are the complex solutions \(p\) of Eq. \eqref{eq:poles}.
\begin{equation}
\label{eq:poles}
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
\end{equation}
Supposing small damping (\(\xi \ll 1\)), two pairs of complex conjugate poles are obtained as shown in Eq. \eqref{eq:pole_values}.
\begin{subequations}
\label{eq:pole_values}
\begin{align}
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right)
\end{align}
\end{subequations}
The real part and complex part of these two pairs of complex conjugate poles are represented in Figure \ref{fig:campbell_diagram} as a function of the rotational speed \(\Omega\).
As the rotational speed increases, \(p_{+}\) goes to higher frequencies and \(p_{-}\) to lower frequencies.
The system becomes unstable for \(\Omega > \omega_0\) as the real part of \(p_{-}\) is positive.
Physically, the negative stiffness term \(-m\Omega^2\) induced by centrifugal forces exceeds the spring stiffness \(k\).
In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are assumed (\(\Omega < \omega_0\)).
\begin{figure}[htbp]
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig02a.pdf}
\caption{\label{fig:campbell_diagram_real} Real Part}
\end{subfigure}
\hfill
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig02b.pdf}
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
\end{subfigure}
\hfill
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed \(\Omega\)}
\centering
\end{figure}
Looking at the transfer function matrix \(\mathbf{G}_d\) in Eq. \eqref{eq:Gd_w0_xi_k}, one can see that the two diagonal (direct) terms are equal and the two off-diagonal (coupling) terms are opposite.
The bode plot of these two terms are shown in Figure \ref{fig:plant_compare_rotating_speed} for several rotational speeds \(\Omega\).
These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as \(\Omega\) increases.
For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p_{-}\) becomes unstable.
\begin{figure}[htbp]
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig03a.pdf}
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms}
\end{subfigure}
\hfill
\begin{subfigure}[c]{0.48\linewidth}
\centering
\includegraphics[scale=1]{figs/fig03b.pdf}
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms}
\end{subfigure}
\hfill
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\mathbf{G}_d\) for several rotational speed \(\Omega\)}
\centering
\end{figure}
\section{Decentralized Integral Force Feedback}
\label{sec:org9a0d7b8}
\label{sec:iff}
In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure \ref{fig:system_iff}).
As this study focuses on decentralized control, two identical controllers \(K_F\) are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
The control diagram is schematically shown in Figure \ref{fig:control_diagram_iff}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.9]{figs/fig04.pdf}
\caption{\label{fig:system_iff}System with added Force Sensor in series with the actuators}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig05.pdf}
\caption{\label{fig:control_diagram_iff}Control Diagram for decentralized IFF}
\end{figure}
\par
The forces \(\begin{bmatrix}f_u & f_v\end{bmatrix}\) measured by the two force sensors represented in Figure \ref{fig:system_iff} are equal to
\begin{equation}
\label{eq:measured_force}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
\end{equation}
Inserting Eq. \eqref{eq:Gd_w0_xi_k} into Eq. \eqref{eq:measured_force} yields
\begin{equation}
\label{eq:Gf_mimo_tf}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \mathbf{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
\begin{subequations}
\label{eq:Gf}
\begin{align}
\mathbf{G}_{f}(1,1) &= {\scriptstyle \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \\
\mathbf{G}_{f}(1,2) &= {\scriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} }
\end{align}
\end{subequations}
The zeros of the diagonal terms of \(\mathbf{G}_f\) are equal to (neglecting the damping for simplicity)
\begin{subequations}
\begin{align}
z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
\end{align}
\end{subequations}
The frequency of the pair of complex conjugate zeros \(z_c\) in Eq. \eqref{eq:iff_zero_cc} always lies between the frequency of the two pairs of complex conjugate poles \(p_{-}\) and \(p_{+}\) in Eq. \eqref{eq:pole_values}.
For non-null rotational speeds, two real zeros \(z_r\) in Eq. \eqref{eq:iff_zero_real} appear in the diagonal terms inducing a non-minimum phase behavior.
This can be seen in the Bode plot of the diagonal terms (Figure \ref{fig:plant_iff_compare_rotating_speed}) where the low frequency gain is no longer zero while the phase stays at \(\SI{180}{\degree}\).
The low frequency gain of \(\mathbf{G}_f\) increases with the rotational speed \(\Omega\)
\begin{equation}
\label{eq:low_freq_gain_iff_plan}
\lim_{\omega \to 0} \left| \mathbf{G}_f (j\omega) \right| = \begin{bmatrix}
\frac{\Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
0 & \frac{\Omega^2}{{\omega_0}^2 - \Omega^2}
\end{bmatrix}
\end{equation}
This can be explained as follows: a constant force \(F_u\) induces a small displacement of the mass \(d_u = \frac{F_u}{k - m\Omega^2}\), which increases the centrifugal force \(m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u\) which is then measured by the force sensors.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig06.pdf}
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of the dynamics from a force actuator to its collocated force sensor (\(f_u/F_u\), \(f_v/F_v\)) for several rotational speeds \(\Omega\)}
\end{figure}
\par
\label{sec:iff_pure_int}
The two IFF controllers \(K_F\) consist of a pure integrator
\begin{equation}
\label{eq:Kf_pure_int}
\begin{aligned}
\mathbf{K}_F(s) &= \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix} \\
K_F(s) &= g \cdot \frac{1}{s}
\end{aligned}
\end{equation}
where \(g\) is a scalar representing the gain of the controller.
In order to see how the IFF affects the poles of the closed loop system, a Root Locus plot (Figure \ref{fig:root_locus_pure_iff}) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain \(g\) varies from \(0\) to \(\infty\) for the two controllers \(K_F\) simultaneously.
As explained in \cite{preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr}, the closed-loop poles start at the open-loop poles (shown by \(\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};\)) for \(g = 0\) and coincide with the transmission zeros (shown by \(\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];\)) as \(g \to \infty\).
The direction of increasing gain is indicated by arrows \(\tikz[baseline=-0.6ex] \draw[-{Stealth[round]},line width=2pt] (0,0) -- (0.3,0);\).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig07.pdf}
\caption{\label{fig:root_locus_pure_iff}Root Locus: evolution of the closed-loop poles with increasing controller gains \(g\)}
\end{figure}
Whereas collocated IFF is usually associated with unconditional stability \cite{preumont91_activ}, this property is lost as soon as the rotational speed in non-null due to gyroscopic effects.
This can be seen in the Root Locus plot (Figure \ref{fig:root_locus_pure_iff}) where the poles corresponding to the controller are bound to the right half plane implying closed-loop system instability.
Physically, this can be explain like so: at low frequency, the loop gain is very large due to the pure integrators in \(K_F\).
The control system is thus canceling the spring forces which makes the suspended platform no able to hold the payload against centrifugal forces, hence the instability.
In order to apply decentralized IFF on rotating platforms, two solutions are proposed to deal with this instability problem.
The first one consists of slightly modifying the control law (Section \ref{sec:iff_hpf}) while the second one consists of adding springs in parallel with the force sensors (Section \ref{sec:iff_kp}).
\section{Integral Force Feedback with High Pass Filter}
\label{sec:org99f262e}
\label{sec:iff_hpf}
As was explained in the previous section, the instability comes in part from the high gain at low frequency caused by the pure integrators.
In order to limit this low frequency controller gain, an high pass filter (HPF) can be added to the controller
\begin{equation}
\label{eq:IFF_LHF}
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
\end{equation}
This is equivalent to slightly shifting the controller pole to the left along the real axis.
This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator \cite{preumont91_activ}.
This is however not the case in this study as it will become clear in the next section.
\par
The loop gains, \(K_F(s)\) times the direct dynamics \(f_u/F_u\), with and without the added HPF are shown in Figure \ref{fig:loop_gain_modified_iff}.
The effect of the added HPF limits the low frequency gain as expected.
The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure \ref{fig:root_locus_modified_iff}.
With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain \(g_\text{max}\)
\begin{equation}
\label{eq:gmax_iff_hpf}
g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)
\end{equation}
It is interesting to note that \(g_{\text{max}}\) also corresponds to the gain where the low frequency loop gain (Figure \ref{fig:loop_gain_modified_iff}) reaches one.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig08.pdf}
\caption{\label{fig:loop_gain_modified_iff}Modification of the loop gain with the added HFP, \(g = 2\), \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig09.pdf}
\caption{\label{fig:root_locus_modified_iff}Modification of the Root Locus with the added HPF, \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
\end{figure}
\par
Two parameters can be tuned for the modified controller in Eq. \eqref{eq:IFF_LHF}: the gain \(g\) and the pole's location \(\omega_i\).
The optimal values of \(\omega_i\) and \(g\) are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized.
In order to visualize how \(\omega_i\) does affect the attainable damping, the Root Locus plots for several \(\omega_i\) are displayed in Figure \ref{fig:root_locus_wi_modified_iff}.
It is shown that even though small \(\omega_i\) seem to allow more damping to be added to the suspension modes, the control gain \(g\) may be limited to small values due to Eq. \eqref{eq:gmax_iff_hpf}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig10.pdf}
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\), \(\Omega = 0.1 \omega_0\)}
\end{figure}
In order to study this trade off, the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) is computed as a function of \(\omega_i/\omega_0\).
The gain \(g_{\text{opt}}\) at which this maximum damping is obtained is also displayed and compared with the gain \(g_{\text{max}}\) at which the system becomes unstable (Figure \ref{fig:mod_iff_damping_wi}).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig11.pdf}
\caption{\label{fig:mod_iff_damping_wi}Attainable damping ratio \(\xi_\text{cl}\) as a function of \(\omega_i/\omega_0\). Corresponding control gain \(g_\text{opt}\) and \(g_\text{max}\) are also shown}
\end{figure}
Three regions can be observed:
\begin{itemize}
\item \(\omega_i/\omega_0 < 0.02\): the added damping is limited by the maximum allowed control gain \(g_{\text{max}}\)
\item \(0.02 < \omega_i/\omega_0 < 0.2\): the attainable damping ratio is maximized and is reached for \(g \approx 2\)
\item \(0.2 < \omega_i/\omega_0\): the added damping decreases as \(\omega_i/\omega_0\) increases
\end{itemize}
\section{Integral Force Feedback with Parallel Springs}
\label{sec:org9cc4e9b}
\label{sec:iff_kp}
In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness induced by the rotation.
Such springs are schematically shown in Figure \ref{fig:system_parallel_springs} where \(k_a\) is the stiffness of the actuator and \(k_p\) the stiffness in parallel with the actuator and force sensor.
Amplified piezoelectric stack actuators can also be used for such purpose where a part of the piezoelectric stack is used as an actuator while the rest is used as a force sensor \cite{souleille18_concep_activ_mount_space_applic}.
The parallel stiffness \(k_p\) then corresponds to the amplification structure.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.9]{figs/fig12.pdf}
\caption{\label{fig:system_parallel_springs}Studied system with additional springs in parallel with the actuators and force sensors}
\end{figure}
\par
The forces \(\begin{bmatrix}f_u & f_v\end{bmatrix}\) measured by the two force sensors represented in Figure \ref{fig:system_parallel_springs} are equal to
\begin{equation}
\label{eq:measured_force_kp}
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k_a)
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
\end{equation}
In order to keep the overall stiffness \(k = k_a + k_p\) constant, thus not modifying the open-loop poles as \(k_p\) is changed, a scalar parameter \(\alpha\) (\(0 \le \alpha < 1\)) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor
\begin{equation}
k_p = \alpha k, \quad k_a = (1 - \alpha) k
\end{equation}
The equations of motion are derived and transformed in the Laplace domain
\begin{equation}
\label{eq:Gk_mimo_tf}
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
\mathbf{G}_k
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
\begin{subequations}
\label{eq:Gk}
\begin{align}
\mathbf{G}_{k}(1,1) &= {\scriptstyle \frac{\big( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \big) \big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big) + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2}{\big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big)^2 + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2} } \\
\mathbf{G}_{k}(1,2) &= {\scriptscriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} }
\end{align}
\end{subequations}
Comparing \(\mathbf{G}_k\) in Eq. \eqref{eq:Gk} with \(\mathbf{G}_f\) in Eq. \eqref{eq:Gf} shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed.
The two real zeros \(z_r\) in Eq. \eqref{eq:iff_zero_real} that were inducing non-minimum phase behavior are transformed into complex conjugate zeros if the following condition hold
\begin{equation}
\label{eq:kp_cond_cc_zeros}
\alpha > \frac{\Omega^2}{{\omega_0}^2} \quad \Leftrightarrow \quad k_p > m \Omega^2
\end{equation}
Thus, if the added parallel stiffness \(k_p\) is higher than the negative stiffness induced by centrifugal forces \(m \Omega^2\), the direct dynamics from actuator to force sensor will show minimum phase behavior.
This is confirmed by the Bode plot of the direct dynamics in Figure \ref{fig:plant_iff_kp}.
Figure \ref{fig:root_locus_iff_kp} shows the Root Locus plots for \(k_p = 0\), \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\) when \(K_F\) is a pure integrator as in Eq. \eqref{eq:Kf_pure_int}.
It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system stay in the (stable) right half-plane, and hence the unconditional stability of IFF is recovered.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig14.pdf}
\caption{\label{fig:plant_iff_kp}Bode plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig15.pdf}
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
\end{figure}
\par
Even though the parallel stiffness \(k_p\) has no impact on the open-loop poles (as the overall stiffness \(k\) stays constant), it has a large impact on the transmission zeros.
Moreover, as the attainable damping is generally proportional to the distance between poles and zeros \cite{preumont18_vibrat_contr_activ_struc_fourt_edition}, the parallel stiffness \(k_p\) is foreseen to have a large impact on the attainable damping.
To study this effect, Root Locus plots for several parallel stiffnesses \(k_p > m \Omega^2\) are shown in Figure \ref{fig:root_locus_iff_kps}.
The frequencies of the transmission zeros of the system are increasing with the parallel stiffness \(k_p\) and the associated attainable damping is reduced.
Therefore, even though the parallel stiffness \(k_p\) should be larger than \(m \Omega^2\) for stability reasons, it should not be taken too high as this would limit the attainable bandwidth.
This is confirmed in Figure \ref{fig:opt_damp_alpha} where the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) and the associated control gain \(g_\text{opt}\) are computed as a function of \(\alpha\).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig16.pdf}
\caption{\label{fig:root_locus_iff_kps}Comparison the Root Locus for three parallel stiffnessses \(k_p\)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=0.95]{figs/fig17.pdf}
\caption{\label{fig:opt_damp_alpha}Optimal Damping Ratio \(\xi_\text{opt}\) and the corresponding optimal gain \(g_\text{opt}\) as a function of \(\alpha\)}
\end{figure}
\section{Comparison and Discussion}
\label{sec:orgab1ee41}
\label{sec:comparison}
Two modifications to adapt the IFF control strategy to rotating platforms have been proposed in Sections \ref{sec:iff_hpf} and \ref{sec:iff_kp}.
These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility.
For the following comparisons, the cut-off frequency for the HPF is set to \(\omega_i = 0.1 \omega_0\) and the stiffness of the parallel springs is set to \(k_p = 5 m \Omega^2\).
\par
Figure \ref{fig:comp_root_locus} shows the Root Locus plots for the two proposed IFF modifications.
While the two pairs of complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not.
This means that the closed-loop behavior of both systems will differ when large control gains are used.
One can observe that the closed loop poles of the system with added springs (in red) are bounded to the left half plane implying unconditional stability.
This is not the case for the system where the controller is augmented with an HPF (in blue).
It is interesting to note that the maximum added damping is very similar for both techniques and is reached for the same control gain \(g_\text{opt} \approx 2 \omega_0\).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig18.pdf}
\caption{\label{fig:comp_root_locus}Root Locus for the two proposed modifications of decentralized IFF, \(\Omega = 0.1 \omega_0\)}
\end{figure}
\par
The two proposed techniques are now compared in terms of closed-loop transmissibility and compliance.
The transmissibility is defined as the transfer function from the displacement of the rotating stage to the displacement of the payload.
It is used to characterize how much vibration is transmitted through the suspended platform to the payload.
The compliance describes the displacement response of the payload to external forces applied to it.
This is a useful metric when disturbances are directly applied to the payload.
The two techniques are also compared with passive damping (Figure \ref{fig:system}) where the damping coefficient \(c\) is tuned to critically damp the resonance when the rotating speed is null.
\begin{equation}
c_\text{crit} = 2 \sqrt{k m}
\end{equation}
Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility (Figure \ref{fig:comp_transmissibility}) and compliance (Figure \ref{fig:comp_compliance}).
It is also confirmed that these two techniques can significantly damp the suspension modes.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig19.pdf}
\caption{\label{fig:comp_transmissibility}Comparison of the two proposed Active Damping Techniques - Transmissibility}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,scale=1]{figs/fig20.pdf}
\caption{\label{fig:comp_compliance}Comparison of the two proposed Active Damping Techniques - Compliance}
\end{figure}
On can see in Figure \ref{fig:comp_transmissibility} that the problem of the degradation of the transmissibility at high frequency when using passive damping techniques is overcome by the use of IFF.
The addition of the HPF or the use of the parallel stiffness permit to limit the degradation of the compliance as compared with classical IFF (Figure \ref{fig:comp_compliance}).
\section{Conclusion}
\label{sec:orgdce7496}
\label{sec:conclusion}
Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied to rotating platforms.
Two modifications of the classical IFF control have been proposed to overcome this issue.
The first modification concerns the controller and consists of adding an high pass filter to the pure integrators.
This is equivalent as to moving the controller pole to the left along the real axis.
This renders the closed loop system stable up to some value of the controller gain \(g_\text{max}\).
The second proposed modification concerns the mechanical system.
Additional springs are added in parallel with the actuators and force sensors.
It was shown that if the stiffness \(k_p\) of the additional springs is larger than the negative stiffness \(m \Omega^2\) induced by centrifugal forces, the classical decentralized IFF regains its unconditional stability property.
While having very different implementations, both proposed modifications are very similar when it comes to the attainable damping and the obtained closed loop system behavior.
Future work will focus on the experimental validation of the proposed active damping techniques.
The Matlab code that was used for this study is available under a MIT License and archived in Zenodo \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
\section*{Acknowledgments}
\label{sec:orgaa0907b}
This research benefited from a FRIA grant (grant number: FC 31597) from the French Community of Belgium.
\section*{References}
\label{sec:orga86c34d}
\bibliographystyle{iopart-num}
\bibliography{ref.bib}
\end{document}

362
journal/ref.bib Normal file
View File

@ -0,0 +1,362 @@
@misc{dehaeze20_activ_dampin_rotat_posit_platf,
author = {Thomas Dehaeze},
howpublished = {Source Code on Zonodo},
month = 07,
title = {Active Damping of Rotating Positioning Platforms},
url = {https://doi.org/10.5281/zenodo.3894342},
doi = {10.5281/zenodo.3894342},
year = 2020,
}
@inproceedings{dehaeze18_sampl_stabil_for_tomog_exper,
author = {Thomas Dehaeze and M. Magnin Mattenet and Christophe
Collette},
title = {Sample Stabilization For Tomography Experiments In Presence
Of Large Plant Uncertainty},
booktitle = {MEDSI'18},
year = 2018,
number = 10,
pages = {153--157},
doi = {10.18429/JACoW-MEDSI2018-WEOAMA02},
url = {https://doi.org/10.18429/JACoW-MEDSI2018-WEOAMA02},
address = {Geneva, Switzerland},
isbn = {978-3-95450-207-3},
language = {english},
month = {Dec},
publisher = {JACoW Publishing},
series = {Mechanical Engineering Design of Synchrotron Radiation
Equipment and Instrumentation},
venue = {Paris, France},
}
@book{skogestad07_multiv_feedb_contr,
author = {Skogestad, Sigurd and Postlethwaite, Ian},
title = {Multivariable Feedback Control: Analysis and Design},
year = 2007,
publisher = {John Wiley},
isbn = 9780470011683,
}
@book{preumont18_vibrat_contr_activ_struc_fourt_edition,
author = {Andre Preumont},
title = {Vibration Control of Active Structures - Fourth Edition},
year = 2018,
publisher = {Springer International Publishing},
url = {https://doi.org/10.1007/978-3-319-72296-2},
doi = {10.1007/978-3-319-72296-2},
pages = {nil},
series = {Solid Mechanics and Its Applications},
}
@inproceedings{preumont91_activ,
author = {Andre Preumont and Jean-Paul Dufour and Christian Malekian},
title = {Active damping by a local force feedback with piezoelectric
actuators},
booktitle = {32nd Structures, Structural Dynamics, and Materials
Conference},
year = 1991,
doi = {10.2514/6.1991-989},
url = {https://doi.org/10.2514/6.1991-989},
month = {apr},
publisher = {American Institute of Aeronautics and Astronautics},
}
@article{preumont08_trans_zeros_struc_contr_with,
author = {Preumont, Andr{\'e} and De Marneffe, Bruno and Krenk,
Steen},
title = {Transmission Zeros in Structural Control With Collocated
Multi-Input/multi-Output Pairs},
journal = {Journal of guidance, control, and dynamics},
volume = 31,
number = 2,
pages = {428--432},
year = 2008,
doi = {10.2514/1.31529},
url = {https://doi.org/10.2514/1.31529},
}
@article{preumont02_force_feedb_versus_accel_feedb,
author = {Preumont, Andr{\'e} and A. Fran{\c{c}}ois and F. Bossens
and A. Abu-Hanieh},
title = {Force Feedback Versus Acceleration Feedback in Active
Vibration Isolation},
journal = {Journal of Sound and Vibration},
volume = 257,
number = 4,
pages = {605-613},
year = 2002,
doi = {10.1006/jsvi.2002.5047},
url = {https://doi.org/10.1006/jsvi.2002.5047},
}
@article{preumont92_activ_dampin_by_local_force,
author = {Preumont, Andre and Dufour, Jean-Paul and Malekian,
Christian},
title = {Active Damping By a Local Force Feedback With Piezoelectric
Actuators},
journal = {Journal of guidance, control, and dynamics},
volume = 15,
number = 2,
pages = {390--395},
year = 1992,
doi = 10.2514/3.20848,
url = {https://doi.org/10.2514/3.20848},
}
@article{teo15_optim_integ_force_feedb_activ_vibrat_contr,
author = {Yik R. Teo and Andrew J. Fleming},
title = {Optimal Integral Force Feedback for Active Vibration
Control},
journal = {Journal of Sound and Vibration},
volume = 356,
pages = {20--33},
year = 2015,
doi = {10.1016/j.jsv.2015.06.046},
url = {https://doi.org/10.1016/j.jsv.2015.06.046},
month = {nov},
publisher = {Elsevier {BV}},
}
@phdthesis{hanieh03_activ_stewar,
author = {Hanieh, Ahmed Abu},
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
title = {Active isolation and damping of vibrations via Stewart
platform},
year = 2003,
}
@article{hauge04_sensor_contr_space_based_six,
author = {G.S. Hauge and M.E. Campbell},
title = {Sensors and Control of a Space-Based Six-Axis Vibration
Isolation System},
journal = {Journal of Sound and Vibration},
volume = 269,
number = {3-5},
pages = {913-931},
year = 2004,
doi = {10.1016/s0022-460x(03)00206-2},
url = {https://doi.org/10.1016/s0022-460x(03)00206-2},
}
@article{souleille18_concep_activ_mount_space_applic,
author = {Souleille, Adrien and Lampert, Thibault and Lafarga, V and
Hellegouarch, Sylvain and Rondineau, Alan and Rodrigues,
Gon{\c{c}}alo and Collette, Christophe},
title = {A Concept of Active Mount for Space Applications},
journal = {CEAS Space Journal},
volume = 10,
number = 2,
pages = {157--165},
year = 2018,
doi = {10.1007/s12567-017-0180-6},
url = {https://doi.org/10.1007/s12567-017-0180-6},
publisher = {Springer},
}
@article{yoshioka01_activ_microv_isolat_system_hi,
author = {H. Yoshioka and Y. Takahashi and K. Katayama and T. Imazawa
and N. Murai},
title = {An Active Microvibration Isolation System for Hi-Tech
Manufacturing Facilities},
journal = {Journal of Vibration and Acoustics},
volume = 123,
number = 2,
pages = 269,
year = 2001,
doi = {10.1115/1.1350566},
url = {https://doi.org/10.1115/1.1350566},
}
@article{lan08_activ_vibrat_isolat_long_range,
author = {Kuo-Jung Lan and Jia-Yush Yen and John A. Kramar},
title = {Active Vibration Isolation for a Long Range Scanning
Tunneling Microscope},
journal = {Asian Journal of Control},
volume = 6,
number = 2,
pages = {179-186},
year = 2008,
doi = {10.1111/j.1934-6093.2004.tb00196.x},
url = {https://doi.org/10.1111/j.1934-6093.2004.tb00196.x},
}
@article{fleming15_low_order_dampin_track_contr,
author = {Andrew J. Fleming and Yik Ren Teo and Kam K. Leang},
title = {Low-Order Damping and Tracking Control for Scanning Probe
Systems},
journal = {Frontiers in Mechanical Engineering},
volume = 1,
number = {nil},
pages = {nil},
year = 2015,
doi = {10.3389/fmech.2015.00014},
url = {https://doi.org/10.3389/fmech.2015.00014},
}
@article{matichard15_seism_isolat_advan_ligo,
author = {Matichard, F and Lantz, B and Mittleman, R and Mason, K and
Kissel, J and Abbott, B and Biscans, S and McIver, J and
Abbott, R and Abbott, S and others},
title = {Seismic Isolation of Advanced Ligo: Review of Strategy,
Instrumentation and Performance},
journal = {Classical and Quantum Gravity},
volume = 32,
number = 18,
pages = 185003,
year = 2015,
doi = 10.1088/0264-9381/32/18/185003,
url = {https://doi.org/10.1088/0264-9381/32/18/185003},
publisher = {IOP Publishing},
}
@article{collette10_activ_quadr_stabil_futur_linear_partic_collid,
author = {Collette, Christophe and Artoos, Kurt and Kuzmin, A and
Janssens, S and Sylte, Magnus and Guinchard, Michael and
Hauviller, Claude},
title = {Active Quadrupole Stabilization for Future Linear Particle
Colliders},
journal = {Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated
Equipment},
volume = 621,
number = {1-3},
pages = {71--78},
year = 2010,
doi = 10.1016/j.nima.2010.05.020,
url = {https://doi.org/10.1016/j.nima.2010.05.020},
publisher = {Elsevier},
}
@misc{reilly06_critic,
author = {Reilly, S P and Leach, R K},
note = {NPL Report},
title = {Critical review of seismic vibration isolation techniques},
year = 2006,
}
@phdthesis{poel10_explor_activ_hard_mount_vibrat,
author = {van der Poel, Gerrit Wijnand},
doi = {10.3990/1.9789036530163},
isbn = {978-90-365-3016-3},
keywords = {parallel robot},
school = {University of Twente},
title = {An Exploration of Active Hard Mount Vibration Isolation for
Precision Equipment},
url = {https://doi.org/10.3990/1.9789036530163},
year = 2010,
}
@article{collette11_review_activ_vibrat_isolat_strat,
author = {Christophe Collette and Stef Janssens and Kurt Artoos},
title = {Review of Active Vibration Isolation Strategies},
journal = {Recent Patents on Mechanical Engineeringe},
volume = 4,
number = 3,
pages = {212-219},
year = 2011,
doi = {10.2174/2212797611104030212},
url = {https://doi.org/10.2174/2212797611104030212},
}
@article{lin06_distur_atten_precis_hexap_point,
author = {Haomin Lin and John E. McInroy},
title = {Disturbance Attenuation in Precise Hexapod Pointing Using
Positive Force Feedback},
journal = {Control Engineering Practice},
volume = 14,
number = 11,
pages = {1377-1386},
year = 2006,
doi = {10.1016/j.conengprac.2005.10.002},
url = {https://doi.org/10.1016/j.conengprac.2005.10.002},
}
@article{fanson90_posit_posit_feedb_contr_large_space_struc,
author = {Fanson, JL and Caughey, T Kv},
title = {Positive Position Feedback Control for Large Space
Structures},
journal = {AIAA journal},
volume = 28,
number = 4,
pages = {717--724},
year = 1990,
doi = 10.2514/3.10451,
url = {https://doi.org/10.2514/3.10451},
}
@article{karnopp74_vibrat_contr_using_semi_activ_force_gener,
author = {Karnopp, Dean and Crosby, Michael J and Harwood, RA},
title = {Vibration Control Using Semi-Active Force Generators},
journal = {Journal of Engineering for Industry},
year = 1974,
doi = {10.1115/1.3438373},
url = {https://doi.org/10.1115/1.3438373},
}
@article{serrand00_multic_feedb_contr_isolat_base_excit_vibrat,
author = {Serrand, M and Elliott, SJ},
title = {Multichannel Feedback Control for the Isolation of
Base-Excited Vibration},
journal = {Journal of Sound and Vibration},
volume = 234,
number = 4,
pages = {681--704},
year = 2000,
doi = 10.1006/jsvi.2000.2891,
url = {https://doi.org/10.1006/jsvi.2000.2891},
publisher = {Elsevier},
}
@article{chesne16_enhan_dampin_flexib_struc_using_force_feedb,
author = {Simon Chesn{\'e} and Ariston Milhomem and Christophe
Collette},
title = {Enhanced Damping of Flexible Structures Using Force
Feedback},
journal = {Journal of Guidance, Control, and Dynamics},
volume = 39,
number = 7,
pages = {1654-1658},
year = 2016,
doi = {10.2514/1.g001620},
url = {https://doi.org/10.2514/1.g001620},
}
@article{zhao19_optim_integ_force_feedb_contr,
author = {Zhao, Guoying and Paknejad, A and Deraemaeker, Arnaud and
Collette, Christophe},
title = {$\mathcal{H}_\infty$ Optimization of an Integral Force
Feedback Controller},
journal = {Journal of Vibration and Control},
volume = 25,
number = 17,
pages = {2330--2339},
year = 2019,
doi = 10.1177/1077546319853165,
url = {https://doi.org/10.1177/1077546319853165},
publisher = {SAGE Publications Sage UK: London, England},
}
@phdthesis{marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans,
author = {de Marneffe, Bruno},
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
title = {Active and Passive Vibration Isolation and Damping via
Shunted Transducers},
year = 2007,
}
@book{matlab20,
author = {MATLAB},
title = {version 9.9.0 (R2020b)},
year = 2020,
publisher = {The MathWorks Inc.},
address = {Natick, Massachusetts},
}
@inproceedings{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,
author = {Dehaeze, T. and Collette, C.},
title = {Active Damping of Rotating Platforms using Integral Force
Feedback},
booktitle = {Proceedings of the International Conference on Modal
Analysis Noise and Vibration Engineering (ISMA)},
year = 2020,
}

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 182 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 162 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 233 KiB

View File

@ -0,0 +1,321 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="181pt" height="175pt" viewBox="0 0 181 175" version="1.2">
<defs>
<g>
<symbol overflow="visible" id="glyph0-0">
<path style="stroke:none;" d="M 0.328125 0 L 0.328125 -6.671875 L 2.984375 -6.671875 L 2.984375 0 Z M 0.671875 -0.328125 L 2.65625 -0.328125 L 2.65625 -6.328125 L 0.671875 -6.328125 Z M 0.671875 -0.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph0-1">
<path style="stroke:none;" d="M 0.109375 -1.84375 L 0.109375 -2.46875 L 2.765625 -2.46875 L 2.765625 -1.84375 Z M 0.109375 -1.84375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-2">
<path style="stroke:none;" d="M 2.5 0.21875 C 1.6875 0.21875 1.128906 -0.113281 0.828125 -0.78125 C 0.535156 -1.457031 0.390625 -2.257812 0.390625 -3.1875 C 0.390625 -3.769531 0.441406 -4.316406 0.546875 -4.828125 C 0.648438 -5.335938 0.859375 -5.769531 1.171875 -6.125 C 1.492188 -6.476562 1.9375 -6.65625 2.5 -6.65625 C 2.9375 -6.65625 3.296875 -6.546875 3.578125 -6.328125 C 3.859375 -6.117188 4.070312 -5.84375 4.21875 -5.5 C 4.363281 -5.164062 4.460938 -4.800781 4.515625 -4.40625 C 4.566406 -4.019531 4.59375 -3.613281 4.59375 -3.1875 C 4.59375 -2.613281 4.539062 -2.078125 4.4375 -1.578125 C 4.332031 -1.078125 4.125 -0.648438 3.8125 -0.296875 C 3.507812 0.046875 3.070312 0.21875 2.5 0.21875 Z M 2.5 -0.046875 C 2.875 -0.046875 3.148438 -0.234375 3.328125 -0.609375 C 3.515625 -0.992188 3.628906 -1.414062 3.671875 -1.875 C 3.710938 -2.332031 3.734375 -2.820312 3.734375 -3.34375 C 3.734375 -3.851562 3.710938 -4.316406 3.671875 -4.734375 C 3.628906 -5.160156 3.515625 -5.546875 3.328125 -5.890625 C 3.148438 -6.234375 2.875 -6.40625 2.5 -6.40625 C 2.125 -6.40625 1.84375 -6.226562 1.65625 -5.875 C 1.476562 -5.53125 1.367188 -5.148438 1.328125 -4.734375 C 1.285156 -4.316406 1.265625 -3.851562 1.265625 -3.34375 C 1.265625 -2.976562 1.269531 -2.628906 1.28125 -2.296875 C 1.300781 -1.972656 1.347656 -1.632812 1.421875 -1.28125 C 1.503906 -0.925781 1.632812 -0.628906 1.8125 -0.390625 C 1.988281 -0.160156 2.21875 -0.046875 2.5 -0.046875 Z M 2.5 -0.046875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-3">
<path style="stroke:none;" d="M 0.84375 -0.546875 C 0.84375 -0.703125 0.894531 -0.832031 1 -0.9375 C 1.113281 -1.039062 1.242188 -1.09375 1.390625 -1.09375 C 1.484375 -1.09375 1.570312 -1.066406 1.65625 -1.015625 C 1.75 -0.972656 1.816406 -0.90625 1.859375 -0.8125 C 1.910156 -0.726562 1.9375 -0.640625 1.9375 -0.546875 C 1.9375 -0.398438 1.878906 -0.269531 1.765625 -0.15625 C 1.660156 -0.0507812 1.535156 0 1.390625 0 C 1.242188 0 1.113281 -0.0507812 1 -0.15625 C 0.894531 -0.269531 0.84375 -0.398438 0.84375 -0.546875 Z M 0.84375 -0.546875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-4">
<path style="stroke:none;" d="M 0.28125 -1.65625 L 0.28125 -2 L 3.375 -6.609375 C 3.394531 -6.640625 3.425781 -6.65625 3.46875 -6.65625 L 3.625 -6.65625 C 3.695312 -6.65625 3.734375 -6.617188 3.734375 -6.546875 L 3.734375 -2 L 4.71875 -2 L 4.71875 -1.65625 L 3.734375 -1.65625 L 3.734375 -0.671875 C 3.734375 -0.535156 3.828125 -0.445312 4.015625 -0.40625 C 4.210938 -0.375 4.441406 -0.359375 4.703125 -0.359375 L 4.703125 0 L 1.953125 0 L 1.953125 -0.359375 C 2.203125 -0.359375 2.425781 -0.375 2.625 -0.40625 C 2.820312 -0.445312 2.921875 -0.535156 2.921875 -0.671875 L 2.921875 -1.65625 Z M 0.609375 -2 L 2.984375 -2 L 2.984375 -5.546875 Z M 0.609375 -2 "/>
</symbol>
<symbol overflow="visible" id="glyph0-5">
<path style="stroke:none;" d="M 0.5 0 L 0.5 -0.265625 C 0.5 -0.285156 0.503906 -0.304688 0.515625 -0.328125 L 2.078125 -2.046875 C 2.304688 -2.296875 2.492188 -2.503906 2.640625 -2.671875 C 2.785156 -2.847656 2.929688 -3.046875 3.078125 -3.265625 C 3.222656 -3.492188 3.335938 -3.722656 3.421875 -3.953125 C 3.503906 -4.191406 3.546875 -4.441406 3.546875 -4.703125 C 3.546875 -4.972656 3.492188 -5.234375 3.390625 -5.484375 C 3.285156 -5.734375 3.132812 -5.929688 2.9375 -6.078125 C 2.738281 -6.234375 2.5 -6.3125 2.21875 -6.3125 C 1.925781 -6.3125 1.660156 -6.222656 1.421875 -6.046875 C 1.191406 -5.867188 1.03125 -5.644531 0.9375 -5.375 C 0.96875 -5.375 1.003906 -5.375 1.046875 -5.375 C 1.203125 -5.375 1.332031 -5.320312 1.4375 -5.21875 C 1.539062 -5.125 1.59375 -5 1.59375 -4.84375 C 1.59375 -4.6875 1.539062 -4.554688 1.4375 -4.453125 C 1.332031 -4.347656 1.203125 -4.296875 1.046875 -4.296875 C 0.890625 -4.296875 0.757812 -4.347656 0.65625 -4.453125 C 0.550781 -4.566406 0.5 -4.695312 0.5 -4.84375 C 0.5 -5.09375 0.546875 -5.328125 0.640625 -5.546875 C 0.734375 -5.765625 0.867188 -5.957031 1.046875 -6.125 C 1.222656 -6.300781 1.421875 -6.429688 1.640625 -6.515625 C 1.867188 -6.609375 2.109375 -6.65625 2.359375 -6.65625 C 2.742188 -6.65625 3.097656 -6.570312 3.421875 -6.40625 C 3.753906 -6.25 4.015625 -6.023438 4.203125 -5.734375 C 4.398438 -5.441406 4.5 -5.097656 4.5 -4.703125 C 4.5 -4.410156 4.429688 -4.132812 4.296875 -3.875 C 4.171875 -3.613281 4.007812 -3.375 3.8125 -3.15625 C 3.613281 -2.945312 3.359375 -2.707031 3.046875 -2.4375 C 2.742188 -2.164062 2.539062 -1.988281 2.4375 -1.90625 L 1.3125 -0.8125 L 2.265625 -0.8125 C 2.742188 -0.8125 3.140625 -0.8125 3.453125 -0.8125 C 3.773438 -0.820312 3.941406 -0.835938 3.953125 -0.859375 C 4.035156 -0.941406 4.117188 -1.25 4.203125 -1.78125 L 4.5 -1.78125 L 4.203125 0 Z M 0.5 0 "/>
</symbol>
<symbol overflow="visible" id="glyph0-6">
<path style="stroke:none;" d="M 2.5 0.21875 C 2.082031 0.21875 1.734375 0.109375 1.453125 -0.109375 C 1.179688 -0.328125 0.96875 -0.609375 0.8125 -0.953125 C 0.664062 -1.304688 0.5625 -1.675781 0.5 -2.0625 C 0.445312 -2.445312 0.421875 -2.835938 0.421875 -3.234375 C 0.421875 -3.765625 0.519531 -4.289062 0.71875 -4.8125 C 0.925781 -5.34375 1.226562 -5.78125 1.625 -6.125 C 2.03125 -6.476562 2.503906 -6.65625 3.046875 -6.65625 C 3.273438 -6.65625 3.488281 -6.613281 3.6875 -6.53125 C 3.882812 -6.445312 4.039062 -6.320312 4.15625 -6.15625 C 4.269531 -5.988281 4.328125 -5.785156 4.328125 -5.546875 C 4.328125 -5.410156 4.28125 -5.296875 4.1875 -5.203125 C 4.09375 -5.109375 3.976562 -5.0625 3.84375 -5.0625 C 3.707031 -5.0625 3.59375 -5.109375 3.5 -5.203125 C 3.40625 -5.296875 3.359375 -5.410156 3.359375 -5.546875 C 3.359375 -5.671875 3.40625 -5.78125 3.5 -5.875 C 3.59375 -5.96875 3.707031 -6.015625 3.84375 -6.015625 L 3.890625 -6.015625 C 3.804688 -6.140625 3.6875 -6.226562 3.53125 -6.28125 C 3.375 -6.34375 3.210938 -6.375 3.046875 -6.375 C 2.847656 -6.375 2.660156 -6.328125 2.484375 -6.234375 C 2.316406 -6.148438 2.164062 -6.03125 2.03125 -5.875 C 1.894531 -5.726562 1.78125 -5.566406 1.6875 -5.390625 C 1.59375 -5.210938 1.519531 -5.003906 1.46875 -4.765625 C 1.425781 -4.535156 1.394531 -4.316406 1.375 -4.109375 C 1.363281 -3.910156 1.359375 -3.660156 1.359375 -3.359375 C 1.472656 -3.628906 1.640625 -3.851562 1.859375 -4.03125 C 2.078125 -4.207031 2.320312 -4.296875 2.59375 -4.296875 C 2.882812 -4.296875 3.148438 -4.234375 3.390625 -4.109375 C 3.640625 -3.992188 3.851562 -3.828125 4.03125 -3.609375 C 4.207031 -3.398438 4.34375 -3.15625 4.4375 -2.875 C 4.53125 -2.601562 4.578125 -2.328125 4.578125 -2.046875 C 4.578125 -1.660156 4.488281 -1.289062 4.3125 -0.9375 C 4.132812 -0.582031 3.882812 -0.300781 3.5625 -0.09375 C 3.25 0.113281 2.894531 0.21875 2.5 0.21875 Z M 2.5 -0.09375 C 2.757812 -0.09375 2.96875 -0.148438 3.125 -0.265625 C 3.28125 -0.390625 3.394531 -0.546875 3.46875 -0.734375 C 3.539062 -0.929688 3.582031 -1.128906 3.59375 -1.328125 C 3.613281 -1.523438 3.625 -1.765625 3.625 -2.046875 C 3.625 -2.429688 3.601562 -2.753906 3.5625 -3.015625 C 3.53125 -3.285156 3.4375 -3.519531 3.28125 -3.71875 C 3.125 -3.925781 2.878906 -4.03125 2.546875 -4.03125 C 2.273438 -4.03125 2.050781 -3.9375 1.875 -3.75 C 1.707031 -3.570312 1.582031 -3.34375 1.5 -3.0625 C 1.414062 -2.78125 1.375 -2.515625 1.375 -2.265625 C 1.375 -2.171875 1.378906 -2.101562 1.390625 -2.0625 C 1.390625 -2.050781 1.390625 -2.039062 1.390625 -2.03125 C 1.390625 -2.03125 1.382812 -2.023438 1.375 -2.015625 C 1.375 -1.722656 1.40625 -1.429688 1.46875 -1.140625 C 1.53125 -0.847656 1.644531 -0.597656 1.8125 -0.390625 C 1.976562 -0.191406 2.207031 -0.09375 2.5 -0.09375 Z M 2.5 -0.09375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-7">
<path style="stroke:none;" d="M 0.421875 -1.515625 C 0.421875 -1.921875 0.550781 -2.273438 0.8125 -2.578125 C 1.082031 -2.890625 1.421875 -3.144531 1.828125 -3.34375 L 1.453125 -3.59375 C 1.234375 -3.738281 1.050781 -3.9375 0.90625 -4.1875 C 0.757812 -4.4375 0.6875 -4.695312 0.6875 -4.96875 C 0.6875 -5.289062 0.769531 -5.578125 0.9375 -5.828125 C 1.101562 -6.085938 1.328125 -6.289062 1.609375 -6.4375 C 1.890625 -6.582031 2.1875 -6.65625 2.5 -6.65625 C 2.789062 -6.65625 3.070312 -6.59375 3.34375 -6.46875 C 3.625 -6.351562 3.851562 -6.179688 4.03125 -5.953125 C 4.207031 -5.734375 4.296875 -5.46875 4.296875 -5.15625 C 4.296875 -4.9375 4.242188 -4.726562 4.140625 -4.53125 C 4.035156 -4.34375 3.890625 -4.171875 3.703125 -4.015625 C 3.523438 -3.867188 3.332031 -3.738281 3.125 -3.625 L 3.6875 -3.265625 C 3.957031 -3.085938 4.171875 -2.859375 4.328125 -2.578125 C 4.492188 -2.296875 4.578125 -2.003906 4.578125 -1.703125 C 4.578125 -1.335938 4.476562 -1.003906 4.28125 -0.703125 C 4.082031 -0.410156 3.820312 -0.179688 3.5 -0.015625 C 3.1875 0.140625 2.851562 0.21875 2.5 0.21875 C 2.15625 0.21875 1.820312 0.144531 1.5 0 C 1.175781 -0.132812 0.914062 -0.332031 0.71875 -0.59375 C 0.519531 -0.863281 0.421875 -1.171875 0.421875 -1.515625 Z M 0.96875 -1.515625 C 0.96875 -1.253906 1.035156 -1.015625 1.171875 -0.796875 C 1.316406 -0.578125 1.507812 -0.40625 1.75 -0.28125 C 1.988281 -0.15625 2.238281 -0.09375 2.5 -0.09375 C 2.882812 -0.09375 3.234375 -0.207031 3.546875 -0.4375 C 3.867188 -0.664062 4.03125 -0.96875 4.03125 -1.34375 C 4.03125 -1.46875 4.003906 -1.59375 3.953125 -1.71875 C 3.898438 -1.84375 3.828125 -1.957031 3.734375 -2.0625 C 3.648438 -2.164062 3.550781 -2.25 3.4375 -2.3125 L 2.09375 -3.171875 C 1.882812 -3.066406 1.691406 -2.925781 1.515625 -2.75 C 1.347656 -2.582031 1.210938 -2.394531 1.109375 -2.1875 C 1.015625 -1.976562 0.96875 -1.753906 0.96875 -1.515625 Z M 1.65625 -4.578125 L 2.859375 -3.796875 C 3.140625 -3.953125 3.367188 -4.144531 3.546875 -4.375 C 3.722656 -4.613281 3.8125 -4.875 3.8125 -5.15625 C 3.8125 -5.382812 3.75 -5.59375 3.625 -5.78125 C 3.5 -5.96875 3.335938 -6.113281 3.140625 -6.21875 C 2.941406 -6.320312 2.722656 -6.375 2.484375 -6.375 C 2.285156 -6.375 2.082031 -6.332031 1.875 -6.25 C 1.675781 -6.175781 1.507812 -6.0625 1.375 -5.90625 C 1.238281 -5.75 1.171875 -5.566406 1.171875 -5.359375 C 1.171875 -5.046875 1.332031 -4.785156 1.65625 -4.578125 Z M 1.65625 -4.578125 "/>
</symbol>
<symbol overflow="visible" id="glyph0-8">
<path style="stroke:none;" d="M 0.921875 0 L 0.921875 -0.359375 C 1.753906 -0.359375 2.171875 -0.460938 2.171875 -0.671875 L 2.171875 -5.921875 C 1.828125 -5.753906 1.394531 -5.671875 0.875 -5.671875 L 0.875 -6.015625 C 1.6875 -6.015625 2.300781 -6.226562 2.71875 -6.65625 L 2.859375 -6.65625 C 2.878906 -6.65625 2.898438 -6.644531 2.921875 -6.625 C 2.941406 -6.613281 2.953125 -6.597656 2.953125 -6.578125 L 2.953125 -0.671875 C 2.953125 -0.460938 3.367188 -0.359375 4.203125 -0.359375 L 4.203125 0 Z M 0.921875 0 "/>
</symbol>
<symbol overflow="visible" id="glyph1-0">
<path style="stroke:none;" d="M 0.359375 0 L 0.359375 -7.328125 L 3.28125 -7.328125 L 3.28125 0 Z M 0.734375 -0.359375 L 2.921875 -0.359375 L 2.921875 -6.96875 L 0.734375 -6.96875 Z M 0.734375 -0.359375 "/>
</symbol>
<symbol overflow="visible" id="glyph1-1">
<path style="stroke:none;" d="M 0.359375 0 L 0.359375 -0.390625 C 1.117188 -0.390625 1.5 -0.503906 1.5 -0.734375 L 1.5 -6.78125 C 1.5 -7.007812 1.117188 -7.125 0.359375 -7.125 L 0.359375 -7.515625 L 3.8125 -7.515625 C 4.226562 -7.515625 4.660156 -7.4375 5.109375 -7.28125 C 5.566406 -7.132812 5.945312 -6.910156 6.25 -6.609375 C 6.550781 -6.304688 6.703125 -5.941406 6.703125 -5.515625 C 6.703125 -5.210938 6.609375 -4.9375 6.421875 -4.6875 C 6.242188 -4.445312 6.007812 -4.242188 5.71875 -4.078125 C 5.4375 -3.921875 5.144531 -3.804688 4.84375 -3.734375 C 5.164062 -3.617188 5.453125 -3.4375 5.703125 -3.1875 C 5.953125 -2.9375 6.101562 -2.648438 6.15625 -2.328125 L 6.3125 -1.359375 C 6.375 -0.910156 6.445312 -0.578125 6.53125 -0.359375 C 6.613281 -0.148438 6.785156 -0.046875 7.046875 -0.046875 C 7.273438 -0.046875 7.445312 -0.148438 7.5625 -0.359375 C 7.675781 -0.578125 7.734375 -0.8125 7.734375 -1.0625 C 7.734375 -1.082031 7.742188 -1.101562 7.765625 -1.125 C 7.785156 -1.144531 7.8125 -1.15625 7.84375 -1.15625 L 7.9375 -1.15625 C 8.007812 -1.15625 8.046875 -1.109375 8.046875 -1.015625 C 8.046875 -0.804688 8.003906 -0.609375 7.921875 -0.421875 C 7.847656 -0.234375 7.738281 -0.078125 7.59375 0.046875 C 7.445312 0.171875 7.269531 0.234375 7.0625 0.234375 C 6.53125 0.234375 6.070312 0.101562 5.6875 -0.15625 C 5.3125 -0.414062 5.125 -0.800781 5.125 -1.3125 L 5.125 -2.28125 C 5.125 -2.65625 4.992188 -2.972656 4.734375 -3.234375 C 4.484375 -3.492188 4.175781 -3.625 3.8125 -3.625 L 2.484375 -3.625 L 2.484375 -0.734375 C 2.484375 -0.503906 2.863281 -0.390625 3.625 -0.390625 L 3.625 0 Z M 2.484375 -3.90625 L 3.65625 -3.90625 C 4.269531 -3.90625 4.734375 -4.023438 5.046875 -4.265625 C 5.367188 -4.515625 5.53125 -4.929688 5.53125 -5.515625 C 5.53125 -6.097656 5.375 -6.507812 5.0625 -6.75 C 4.75 -7 4.28125 -7.125 3.65625 -7.125 L 3.046875 -7.125 C 2.910156 -7.125 2.804688 -7.117188 2.734375 -7.109375 C 2.660156 -7.097656 2.597656 -7.066406 2.546875 -7.015625 C 2.503906 -6.960938 2.484375 -6.882812 2.484375 -6.78125 Z M 2.484375 -3.90625 "/>
</symbol>
<symbol overflow="visible" id="glyph1-2">
<path style="stroke:none;" d="M 2.734375 0.125 C 2.285156 0.125 1.875 0.0078125 1.5 -0.21875 C 1.132812 -0.457031 0.84375 -0.769531 0.625 -1.15625 C 0.414062 -1.550781 0.3125 -1.96875 0.3125 -2.40625 C 0.3125 -2.84375 0.40625 -3.253906 0.59375 -3.640625 C 0.789062 -4.023438 1.0625 -4.335938 1.40625 -4.578125 C 1.757812 -4.816406 2.148438 -4.9375 2.578125 -4.9375 C 2.921875 -4.9375 3.210938 -4.878906 3.453125 -4.765625 C 3.703125 -4.648438 3.90625 -4.488281 4.0625 -4.28125 C 4.226562 -4.082031 4.351562 -3.847656 4.4375 -3.578125 C 4.519531 -3.304688 4.5625 -3.007812 4.5625 -2.6875 C 4.5625 -2.59375 4.523438 -2.546875 4.453125 -2.546875 L 1.265625 -2.546875 L 1.265625 -2.421875 C 1.265625 -1.816406 1.382812 -1.296875 1.625 -0.859375 C 1.875 -0.421875 2.28125 -0.203125 2.84375 -0.203125 C 3.0625 -0.203125 3.265625 -0.25 3.453125 -0.34375 C 3.648438 -0.445312 3.816406 -0.585938 3.953125 -0.765625 C 4.097656 -0.941406 4.195312 -1.132812 4.25 -1.34375 C 4.257812 -1.363281 4.269531 -1.382812 4.28125 -1.40625 C 4.300781 -1.425781 4.328125 -1.4375 4.359375 -1.4375 L 4.453125 -1.4375 C 4.523438 -1.4375 4.5625 -1.390625 4.5625 -1.296875 C 4.457031 -0.878906 4.234375 -0.535156 3.890625 -0.265625 C 3.546875 -0.00390625 3.160156 0.125 2.734375 0.125 Z M 1.28125 -2.8125 L 3.78125 -2.8125 C 3.78125 -3.09375 3.742188 -3.375 3.671875 -3.65625 C 3.597656 -3.9375 3.46875 -4.171875 3.28125 -4.359375 C 3.101562 -4.546875 2.867188 -4.640625 2.578125 -4.640625 C 2.160156 -4.640625 1.835938 -4.441406 1.609375 -4.046875 C 1.390625 -3.660156 1.28125 -3.25 1.28125 -2.8125 Z M 1.28125 -2.8125 "/>
</symbol>
<symbol overflow="visible" id="glyph1-3">
<path style="stroke:none;" d="M 0.4375 -1.078125 C 0.4375 -1.515625 0.609375 -1.867188 0.953125 -2.140625 C 1.296875 -2.421875 1.707031 -2.613281 2.1875 -2.71875 C 2.675781 -2.832031 3.132812 -2.890625 3.5625 -2.890625 L 3.5625 -3.34375 C 3.5625 -3.550781 3.515625 -3.753906 3.421875 -3.953125 C 3.328125 -4.160156 3.191406 -4.328125 3.015625 -4.453125 C 2.847656 -4.578125 2.65625 -4.640625 2.4375 -4.640625 C 1.957031 -4.640625 1.585938 -4.53125 1.328125 -4.3125 C 1.472656 -4.3125 1.585938 -4.257812 1.671875 -4.15625 C 1.765625 -4.050781 1.8125 -3.925781 1.8125 -3.78125 C 1.8125 -3.632812 1.757812 -3.507812 1.65625 -3.40625 C 1.550781 -3.300781 1.429688 -3.25 1.296875 -3.25 C 1.140625 -3.25 1.007812 -3.300781 0.90625 -3.40625 C 0.800781 -3.507812 0.75 -3.632812 0.75 -3.78125 C 0.75 -4.164062 0.925781 -4.453125 1.28125 -4.640625 C 1.632812 -4.835938 2.019531 -4.9375 2.4375 -4.9375 C 2.738281 -4.9375 3.039062 -4.867188 3.34375 -4.734375 C 3.644531 -4.609375 3.890625 -4.425781 4.078125 -4.1875 C 4.265625 -3.957031 4.359375 -3.6875 4.359375 -3.375 L 4.359375 -0.890625 C 4.359375 -0.742188 4.390625 -0.609375 4.453125 -0.484375 C 4.515625 -0.367188 4.613281 -0.3125 4.75 -0.3125 C 4.863281 -0.3125 4.953125 -0.375 5.015625 -0.5 C 5.078125 -0.625 5.109375 -0.753906 5.109375 -0.890625 L 5.109375 -1.59375 L 5.421875 -1.59375 L 5.421875 -0.890625 C 5.421875 -0.722656 5.378906 -0.566406 5.296875 -0.421875 C 5.210938 -0.273438 5.097656 -0.15625 4.953125 -0.0625 C 4.804688 0.0195312 4.648438 0.0625 4.484375 0.0625 C 4.265625 0.0625 4.078125 -0.0195312 3.921875 -0.1875 C 3.765625 -0.351562 3.675781 -0.550781 3.65625 -0.78125 C 3.519531 -0.5 3.320312 -0.273438 3.0625 -0.109375 C 2.800781 0.046875 2.519531 0.125 2.21875 0.125 C 1.9375 0.125 1.660156 0.0820312 1.390625 0 C 1.117188 -0.0820312 0.890625 -0.210938 0.703125 -0.390625 C 0.523438 -0.566406 0.4375 -0.796875 0.4375 -1.078125 Z M 1.328125 -1.078125 C 1.328125 -0.816406 1.421875 -0.597656 1.609375 -0.421875 C 1.804688 -0.253906 2.03125 -0.171875 2.28125 -0.171875 C 2.519531 -0.171875 2.734375 -0.226562 2.921875 -0.34375 C 3.117188 -0.457031 3.273438 -0.617188 3.390625 -0.828125 C 3.503906 -1.035156 3.5625 -1.25 3.5625 -1.46875 L 3.5625 -2.609375 C 3.226562 -2.609375 2.882812 -2.550781 2.53125 -2.4375 C 2.1875 -2.332031 1.898438 -2.164062 1.671875 -1.9375 C 1.441406 -1.707031 1.328125 -1.421875 1.328125 -1.078125 Z M 1.328125 -1.078125 "/>
</symbol>
<symbol overflow="visible" id="glyph1-4">
<path style="stroke:none;" d="M 0.34375 0 L 0.34375 -0.390625 C 0.59375 -0.390625 0.796875 -0.40625 0.953125 -0.4375 C 1.117188 -0.476562 1.203125 -0.578125 1.203125 -0.734375 L 1.203125 -6.515625 C 1.203125 -6.710938 1.171875 -6.851562 1.109375 -6.9375 C 1.046875 -7.019531 0.957031 -7.070312 0.84375 -7.09375 C 0.738281 -7.113281 0.570312 -7.125 0.34375 -7.125 L 0.34375 -7.515625 L 1.96875 -7.625 L 1.96875 -0.734375 C 1.96875 -0.578125 2.046875 -0.476562 2.203125 -0.4375 C 2.367188 -0.40625 2.578125 -0.390625 2.828125 -0.390625 L 2.828125 0 Z M 0.34375 0 "/>
</symbol>
<symbol overflow="visible" id="glyph1-5">
<path style="stroke:none;" d="M 0.359375 0 L 0.359375 -0.390625 C 1.117188 -0.390625 1.5 -0.503906 1.5 -0.734375 L 1.5 -6.78125 C 1.5 -7.007812 1.117188 -7.125 0.359375 -7.125 L 0.359375 -7.515625 L 4.28125 -7.515625 C 4.675781 -7.515625 5.070312 -7.429688 5.46875 -7.265625 C 5.875 -7.097656 6.207031 -6.859375 6.46875 -6.546875 C 6.726562 -6.234375 6.859375 -5.867188 6.859375 -5.453125 C 6.859375 -5.035156 6.726562 -4.671875 6.46875 -4.359375 C 6.207031 -4.054688 5.878906 -3.828125 5.484375 -3.671875 C 5.085938 -3.515625 4.6875 -3.4375 4.28125 -3.4375 L 2.515625 -3.4375 L 2.515625 -0.734375 C 2.515625 -0.503906 2.894531 -0.390625 3.65625 -0.390625 L 3.65625 0 Z M 2.484375 -3.765625 L 3.984375 -3.765625 C 4.390625 -3.765625 4.71875 -3.820312 4.96875 -3.9375 C 5.21875 -4.050781 5.398438 -4.226562 5.515625 -4.46875 C 5.628906 -4.71875 5.6875 -5.046875 5.6875 -5.453125 C 5.6875 -6.046875 5.554688 -6.472656 5.296875 -6.734375 C 5.035156 -6.992188 4.597656 -7.125 3.984375 -7.125 L 3.046875 -7.125 C 2.910156 -7.125 2.804688 -7.117188 2.734375 -7.109375 C 2.660156 -7.097656 2.597656 -7.066406 2.546875 -7.015625 C 2.503906 -6.960938 2.484375 -6.882812 2.484375 -6.78125 Z M 2.484375 -3.765625 "/>
</symbol>
<symbol overflow="visible" id="glyph1-6">
<path style="stroke:none;" d="M 0.28125 0 L 0.28125 -0.390625 C 0.53125 -0.390625 0.734375 -0.40625 0.890625 -0.4375 C 1.054688 -0.476562 1.140625 -0.578125 1.140625 -0.734375 L 1.140625 -3.734375 C 1.140625 -3.929688 1.109375 -4.070312 1.046875 -4.15625 C 0.992188 -4.25 0.910156 -4.304688 0.796875 -4.328125 C 0.691406 -4.347656 0.519531 -4.359375 0.28125 -4.359375 L 0.28125 -4.75 L 1.859375 -4.859375 L 1.859375 -3.78125 C 1.972656 -4.101562 2.140625 -4.363281 2.359375 -4.5625 C 2.578125 -4.757812 2.84375 -4.859375 3.15625 -4.859375 C 3.375 -4.859375 3.566406 -4.789062 3.734375 -4.65625 C 3.910156 -4.53125 4 -4.363281 4 -4.15625 C 4 -4.019531 3.953125 -3.898438 3.859375 -3.796875 C 3.765625 -3.703125 3.644531 -3.65625 3.5 -3.65625 C 3.363281 -3.65625 3.25 -3.703125 3.15625 -3.796875 C 3.0625 -3.898438 3.015625 -4.019531 3.015625 -4.15625 C 3.015625 -4.351562 3.082031 -4.492188 3.21875 -4.578125 L 3.15625 -4.578125 C 2.863281 -4.578125 2.625 -4.46875 2.4375 -4.25 C 2.25 -4.039062 2.113281 -3.773438 2.03125 -3.453125 C 1.945312 -3.128906 1.90625 -2.828125 1.90625 -2.546875 L 1.90625 -0.734375 C 1.90625 -0.503906 2.265625 -0.390625 2.984375 -0.390625 L 2.984375 0 Z M 0.28125 0 "/>
</symbol>
<symbol overflow="visible" id="glyph1-7">
<path style="stroke:none;" d="M 1.125 -1.328125 L 1.125 -4.359375 L 0.203125 -4.359375 L 0.203125 -4.640625 C 0.679688 -4.640625 1.035156 -4.863281 1.265625 -5.3125 C 1.492188 -5.757812 1.609375 -6.242188 1.609375 -6.765625 L 1.921875 -6.765625 L 1.921875 -4.75 L 3.46875 -4.75 L 3.46875 -4.359375 L 1.921875 -4.359375 L 1.921875 -1.34375 C 1.921875 -1.039062 1.972656 -0.773438 2.078125 -0.546875 C 2.179688 -0.316406 2.363281 -0.203125 2.625 -0.203125 C 2.875 -0.203125 3.050781 -0.320312 3.15625 -0.5625 C 3.269531 -0.800781 3.328125 -1.0625 3.328125 -1.34375 L 3.328125 -2 L 3.65625 -2 L 3.65625 -1.328125 C 3.65625 -1.097656 3.613281 -0.867188 3.53125 -0.640625 C 3.445312 -0.421875 3.320312 -0.238281 3.15625 -0.09375 C 2.988281 0.0507812 2.785156 0.125 2.546875 0.125 C 2.109375 0.125 1.757812 -0.00390625 1.5 -0.265625 C 1.25 -0.535156 1.125 -0.890625 1.125 -1.328125 Z M 1.125 -1.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-0">
<path style="stroke:none;" d="M 0 -0.359375 L -7.328125 -0.359375 L -7.328125 -3.28125 L 0 -3.28125 Z M -0.359375 -0.734375 L -0.359375 -2.921875 L -6.96875 -2.921875 L -6.96875 -0.734375 Z M -0.359375 -0.734375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-1">
<path style="stroke:none;" d="M 0 -0.28125 L -0.390625 -0.28125 C -0.390625 -1.070312 -0.503906 -1.46875 -0.734375 -1.46875 L -6.78125 -1.46875 C -7.007812 -1.46875 -7.125 -1.070312 -7.125 -0.28125 L -7.515625 -0.28125 L -7.515625 -3.6875 L -7.125 -3.6875 C -7.125 -2.894531 -7.007812 -2.5 -6.78125 -2.5 L -0.734375 -2.5 C -0.503906 -2.5 -0.390625 -2.894531 -0.390625 -3.6875 L 0 -3.6875 Z M 0 -0.28125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-2">
<path style="stroke:none;" d="M 0 -0.328125 L -0.390625 -0.328125 C -0.390625 -0.578125 -0.40625 -0.78125 -0.4375 -0.9375 C -0.476562 -1.101562 -0.578125 -1.1875 -0.734375 -1.1875 L -3.734375 -1.1875 C -3.929688 -1.1875 -4.070312 -1.15625 -4.15625 -1.09375 C -4.25 -1.039062 -4.304688 -0.957031 -4.328125 -0.84375 C -4.347656 -0.726562 -4.359375 -0.554688 -4.359375 -0.328125 L -4.75 -0.328125 L -4.859375 -1.921875 L -3.78125 -1.921875 C -4.101562 -2.066406 -4.363281 -2.285156 -4.5625 -2.578125 C -4.757812 -2.867188 -4.859375 -3.179688 -4.859375 -3.515625 C -4.859375 -4.359375 -4.515625 -4.851562 -3.828125 -5 C -4.140625 -5.144531 -4.390625 -5.359375 -4.578125 -5.640625 C -4.765625 -5.929688 -4.859375 -6.242188 -4.859375 -6.578125 C -4.859375 -6.910156 -4.800781 -7.191406 -4.6875 -7.421875 C -4.582031 -7.648438 -4.421875 -7.820312 -4.203125 -7.9375 C -3.984375 -8.050781 -3.707031 -8.109375 -3.375 -8.109375 L -0.734375 -8.109375 C -0.578125 -8.109375 -0.476562 -8.1875 -0.4375 -8.34375 C -0.40625 -8.507812 -0.390625 -8.71875 -0.390625 -8.96875 L 0 -8.96875 L 0 -6.453125 L -0.390625 -6.453125 C -0.390625 -6.703125 -0.40625 -6.90625 -0.4375 -7.0625 C -0.476562 -7.226562 -0.578125 -7.3125 -0.734375 -7.3125 L -3.34375 -7.3125 C -3.71875 -7.3125 -4.015625 -7.257812 -4.234375 -7.15625 C -4.460938 -7.050781 -4.578125 -6.835938 -4.578125 -6.515625 C -4.578125 -6.085938 -4.40625 -5.734375 -4.0625 -5.453125 C -3.726562 -5.179688 -3.34375 -5.046875 -2.90625 -5.046875 L -0.734375 -5.046875 C -0.578125 -5.046875 -0.476562 -5.125 -0.4375 -5.28125 C -0.40625 -5.445312 -0.390625 -5.65625 -0.390625 -5.90625 L 0 -5.90625 L 0 -3.390625 L -0.390625 -3.390625 C -0.390625 -3.640625 -0.40625 -3.84375 -0.4375 -4 C -0.476562 -4.164062 -0.578125 -4.25 -0.734375 -4.25 L -3.34375 -4.25 C -3.707031 -4.25 -4.003906 -4.195312 -4.234375 -4.09375 C -4.460938 -3.988281 -4.578125 -3.773438 -4.578125 -3.453125 C -4.578125 -3.023438 -4.40625 -2.675781 -4.0625 -2.40625 C -3.726562 -2.132812 -3.34375 -2 -2.90625 -2 L -0.734375 -2 C -0.578125 -2 -0.476562 -2.078125 -0.4375 -2.234375 C -0.40625 -2.390625 -0.390625 -2.59375 -0.390625 -2.84375 L 0 -2.84375 Z M 0 -0.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-3">
<path style="stroke:none;" d="M -1.078125 -0.4375 C -1.515625 -0.4375 -1.867188 -0.609375 -2.140625 -0.953125 C -2.421875 -1.296875 -2.613281 -1.707031 -2.71875 -2.1875 C -2.832031 -2.675781 -2.890625 -3.132812 -2.890625 -3.5625 L -3.34375 -3.5625 C -3.550781 -3.5625 -3.753906 -3.515625 -3.953125 -3.421875 C -4.160156 -3.328125 -4.328125 -3.191406 -4.453125 -3.015625 C -4.578125 -2.847656 -4.640625 -2.65625 -4.640625 -2.4375 C -4.640625 -1.957031 -4.53125 -1.585938 -4.3125 -1.328125 C -4.3125 -1.472656 -4.257812 -1.585938 -4.15625 -1.671875 C -4.050781 -1.765625 -3.925781 -1.8125 -3.78125 -1.8125 C -3.632812 -1.8125 -3.507812 -1.757812 -3.40625 -1.65625 C -3.300781 -1.550781 -3.25 -1.429688 -3.25 -1.296875 C -3.25 -1.140625 -3.300781 -1.007812 -3.40625 -0.90625 C -3.507812 -0.800781 -3.632812 -0.75 -3.78125 -0.75 C -4.164062 -0.75 -4.453125 -0.925781 -4.640625 -1.28125 C -4.835938 -1.632812 -4.9375 -2.019531 -4.9375 -2.4375 C -4.9375 -2.738281 -4.867188 -3.039062 -4.734375 -3.34375 C -4.609375 -3.644531 -4.425781 -3.890625 -4.1875 -4.078125 C -3.957031 -4.265625 -3.6875 -4.359375 -3.375 -4.359375 L -0.890625 -4.359375 C -0.742188 -4.359375 -0.609375 -4.390625 -0.484375 -4.453125 C -0.367188 -4.515625 -0.3125 -4.613281 -0.3125 -4.75 C -0.3125 -4.863281 -0.375 -4.953125 -0.5 -5.015625 C -0.625 -5.078125 -0.753906 -5.109375 -0.890625 -5.109375 L -1.59375 -5.109375 L -1.59375 -5.421875 L -0.890625 -5.421875 C -0.722656 -5.421875 -0.566406 -5.378906 -0.421875 -5.296875 C -0.273438 -5.210938 -0.15625 -5.097656 -0.0625 -4.953125 C 0.0195312 -4.804688 0.0625 -4.648438 0.0625 -4.484375 C 0.0625 -4.265625 -0.0195312 -4.078125 -0.1875 -3.921875 C -0.351562 -3.765625 -0.550781 -3.675781 -0.78125 -3.65625 C -0.5 -3.519531 -0.273438 -3.320312 -0.109375 -3.0625 C 0.046875 -2.800781 0.125 -2.519531 0.125 -2.21875 C 0.125 -1.9375 0.0820312 -1.660156 0 -1.390625 C -0.0820312 -1.117188 -0.210938 -0.890625 -0.390625 -0.703125 C -0.566406 -0.523438 -0.796875 -0.4375 -1.078125 -0.4375 Z M -1.078125 -1.328125 C -0.816406 -1.328125 -0.597656 -1.421875 -0.421875 -1.609375 C -0.253906 -1.804688 -0.171875 -2.03125 -0.171875 -2.28125 C -0.171875 -2.519531 -0.226562 -2.734375 -0.34375 -2.921875 C -0.457031 -3.117188 -0.617188 -3.273438 -0.828125 -3.390625 C -1.035156 -3.503906 -1.25 -3.5625 -1.46875 -3.5625 L -2.609375 -3.5625 C -2.609375 -3.226562 -2.550781 -2.882812 -2.4375 -2.53125 C -2.332031 -2.1875 -2.164062 -1.898438 -1.9375 -1.671875 C -1.707031 -1.441406 -1.421875 -1.328125 -1.078125 -1.328125 Z M -1.078125 -1.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-4">
<path style="stroke:none;" d="M 0.859375 -0.3125 C 0.597656 -0.3125 0.367188 -0.40625 0.171875 -0.59375 C -0.0234375 -0.78125 -0.160156 -1.003906 -0.234375 -1.265625 C -0.347656 -1.117188 -0.488281 -1.003906 -0.65625 -0.921875 C -0.820312 -0.847656 -1.003906 -0.8125 -1.203125 -0.8125 C -1.546875 -0.8125 -1.847656 -0.921875 -2.109375 -1.140625 C -2.441406 -0.804688 -2.820312 -0.640625 -3.25 -0.640625 C -3.476562 -0.640625 -3.691406 -0.6875 -3.890625 -0.78125 C -4.085938 -0.882812 -4.257812 -1.023438 -4.40625 -1.203125 C -4.550781 -1.378906 -4.660156 -1.570312 -4.734375 -1.78125 C -4.816406 -2 -4.859375 -2.21875 -4.859375 -2.4375 C -4.859375 -2.875 -4.734375 -3.269531 -4.484375 -3.625 C -4.640625 -3.769531 -4.757812 -3.945312 -4.84375 -4.15625 C -4.9375 -4.363281 -4.984375 -4.578125 -4.984375 -4.796875 C -4.984375 -4.953125 -4.925781 -5.078125 -4.8125 -5.171875 C -4.695312 -5.273438 -4.5625 -5.328125 -4.40625 -5.328125 C -4.320312 -5.328125 -4.242188 -5.289062 -4.171875 -5.21875 C -4.109375 -5.15625 -4.078125 -5.082031 -4.078125 -5 C -4.078125 -4.90625 -4.109375 -4.820312 -4.171875 -4.75 C -4.242188 -4.6875 -4.320312 -4.65625 -4.40625 -4.65625 C -4.539062 -4.65625 -4.632812 -4.695312 -4.6875 -4.78125 C -4.6875 -4.40625 -4.554688 -4.082031 -4.296875 -3.8125 C -4.171875 -3.9375 -4.007812 -4.039062 -3.8125 -4.125 C -3.625 -4.207031 -3.4375 -4.25 -3.25 -4.25 C -2.9375 -4.25 -2.65625 -4.160156 -2.40625 -3.984375 C -2.15625 -3.816406 -1.957031 -3.59375 -1.8125 -3.3125 C -1.675781 -3.03125 -1.609375 -2.738281 -1.609375 -2.4375 C -1.609375 -2.039062 -1.71875 -1.675781 -1.9375 -1.34375 C -1.800781 -1.238281 -1.644531 -1.1875 -1.46875 -1.1875 C -1.269531 -1.1875 -1.097656 -1.25 -0.953125 -1.375 C -0.804688 -1.5 -0.734375 -1.660156 -0.734375 -1.859375 L -0.734375 -2.765625 C -0.734375 -3.203125 -0.691406 -3.59375 -0.609375 -3.9375 C -0.535156 -4.289062 -0.378906 -4.585938 -0.140625 -4.828125 C 0.0859375 -5.066406 0.421875 -5.1875 0.859375 -5.1875 C 1.179688 -5.1875 1.445312 -5.046875 1.65625 -4.765625 C 1.875 -4.492188 2.03125 -4.171875 2.125 -3.796875 C 2.21875 -3.421875 2.265625 -3.070312 2.265625 -2.75 C 2.265625 -2.425781 2.21875 -2.070312 2.125 -1.6875 C 2.03125 -1.3125 1.875 -0.988281 1.65625 -0.71875 C 1.445312 -0.445312 1.179688 -0.3125 0.859375 -0.3125 Z M 0.859375 -0.921875 C 1.109375 -0.921875 1.316406 -1.019531 1.484375 -1.21875 C 1.648438 -1.425781 1.769531 -1.671875 1.84375 -1.953125 C 1.925781 -2.234375 1.96875 -2.5 1.96875 -2.75 C 1.96875 -3 1.925781 -3.265625 1.84375 -3.546875 C 1.769531 -3.828125 1.648438 -4.066406 1.484375 -4.265625 C 1.316406 -4.460938 1.109375 -4.5625 0.859375 -4.5625 C 0.472656 -4.5625 0.222656 -4.382812 0.109375 -4.03125 C 0.00390625 -3.6875 -0.046875 -3.265625 -0.046875 -2.765625 L -0.046875 -1.859375 C -0.046875 -1.691406 -0.0078125 -1.535156 0.0625 -1.390625 C 0.144531 -1.253906 0.257812 -1.140625 0.40625 -1.046875 C 0.550781 -0.960938 0.703125 -0.921875 0.859375 -0.921875 Z M -1.90625 -2.4375 C -1.90625 -3.0625 -2.351562 -3.375 -3.25 -3.375 C -3.625 -3.375 -3.9375 -3.304688 -4.1875 -3.171875 C -4.4375 -3.046875 -4.5625 -2.800781 -4.5625 -2.4375 C -4.5625 -2.082031 -4.4375 -1.835938 -4.1875 -1.703125 C -3.9375 -1.578125 -3.625 -1.515625 -3.25 -1.515625 C -3 -1.515625 -2.773438 -1.535156 -2.578125 -1.578125 C -2.378906 -1.628906 -2.21875 -1.722656 -2.09375 -1.859375 C -1.96875 -1.992188 -1.90625 -2.1875 -1.90625 -2.4375 Z M -1.90625 -2.4375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-5">
<path style="stroke:none;" d="M 0 -0.34375 L -0.390625 -0.34375 C -0.390625 -0.59375 -0.40625 -0.796875 -0.4375 -0.953125 C -0.476562 -1.117188 -0.578125 -1.203125 -0.734375 -1.203125 L -3.734375 -1.203125 C -4.015625 -1.203125 -4.1875 -1.144531 -4.25 -1.03125 C -4.320312 -0.925781 -4.359375 -0.710938 -4.359375 -0.390625 L -4.75 -0.390625 L -4.859375 -1.96875 L -0.734375 -1.96875 C -0.578125 -1.96875 -0.476562 -2.035156 -0.4375 -2.171875 C -0.40625 -2.316406 -0.390625 -2.503906 -0.390625 -2.734375 L 0 -2.734375 Z M -6.75 -0.8125 C -6.914062 -0.8125 -7.054688 -0.867188 -7.171875 -0.984375 C -7.296875 -1.109375 -7.359375 -1.25 -7.359375 -1.40625 C -7.359375 -1.507812 -7.332031 -1.609375 -7.28125 -1.703125 C -7.226562 -1.804688 -7.148438 -1.882812 -7.046875 -1.9375 C -6.953125 -1.988281 -6.851562 -2.015625 -6.75 -2.015625 C -6.59375 -2.015625 -6.453125 -1.953125 -6.328125 -1.828125 C -6.210938 -1.710938 -6.15625 -1.570312 -6.15625 -1.40625 C -6.15625 -1.25 -6.210938 -1.109375 -6.328125 -0.984375 C -6.453125 -0.867188 -6.59375 -0.8125 -6.75 -0.8125 Z M -6.75 -0.8125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-6">
<path style="stroke:none;" d="M 0 -0.328125 L -0.390625 -0.328125 C -0.390625 -0.578125 -0.40625 -0.78125 -0.4375 -0.9375 C -0.476562 -1.101562 -0.578125 -1.1875 -0.734375 -1.1875 L -3.734375 -1.1875 C -3.929688 -1.1875 -4.070312 -1.15625 -4.15625 -1.09375 C -4.25 -1.039062 -4.304688 -0.957031 -4.328125 -0.84375 C -4.347656 -0.726562 -4.359375 -0.554688 -4.359375 -0.328125 L -4.75 -0.328125 L -4.859375 -1.921875 L -3.78125 -1.921875 C -4.101562 -2.066406 -4.363281 -2.285156 -4.5625 -2.578125 C -4.757812 -2.867188 -4.859375 -3.179688 -4.859375 -3.515625 C -4.859375 -4.023438 -4.734375 -4.40625 -4.484375 -4.65625 C -4.242188 -4.914062 -3.875 -5.046875 -3.375 -5.046875 L -0.734375 -5.046875 C -0.578125 -5.046875 -0.476562 -5.125 -0.4375 -5.28125 C -0.40625 -5.445312 -0.390625 -5.65625 -0.390625 -5.90625 L 0 -5.90625 L 0 -3.390625 L -0.390625 -3.390625 C -0.390625 -3.640625 -0.40625 -3.84375 -0.4375 -4 C -0.476562 -4.164062 -0.578125 -4.25 -0.734375 -4.25 L -3.34375 -4.25 C -3.707031 -4.25 -4.003906 -4.195312 -4.234375 -4.09375 C -4.460938 -3.988281 -4.578125 -3.773438 -4.578125 -3.453125 C -4.578125 -3.023438 -4.40625 -2.675781 -4.0625 -2.40625 C -3.726562 -2.132812 -3.34375 -2 -2.90625 -2 L -0.734375 -2 C -0.578125 -2 -0.476562 -2.078125 -0.4375 -2.234375 C -0.40625 -2.390625 -0.390625 -2.59375 -0.390625 -2.84375 L 0 -2.84375 Z M 0 -0.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-7">
<path style="stroke:none;" d="M 0 -0.28125 L -0.390625 -0.28125 C -0.390625 -0.53125 -0.40625 -0.734375 -0.4375 -0.890625 C -0.476562 -1.054688 -0.578125 -1.140625 -0.734375 -1.140625 L -3.734375 -1.140625 C -3.929688 -1.140625 -4.070312 -1.109375 -4.15625 -1.046875 C -4.25 -0.992188 -4.304688 -0.910156 -4.328125 -0.796875 C -4.347656 -0.691406 -4.359375 -0.519531 -4.359375 -0.28125 L -4.75 -0.28125 L -4.859375 -1.859375 L -3.78125 -1.859375 C -4.101562 -1.972656 -4.363281 -2.140625 -4.5625 -2.359375 C -4.757812 -2.578125 -4.859375 -2.84375 -4.859375 -3.15625 C -4.859375 -3.375 -4.789062 -3.566406 -4.65625 -3.734375 C -4.53125 -3.910156 -4.363281 -4 -4.15625 -4 C -4.019531 -4 -3.898438 -3.953125 -3.796875 -3.859375 C -3.703125 -3.765625 -3.65625 -3.644531 -3.65625 -3.5 C -3.65625 -3.363281 -3.703125 -3.25 -3.796875 -3.15625 C -3.898438 -3.0625 -4.019531 -3.015625 -4.15625 -3.015625 C -4.351562 -3.015625 -4.492188 -3.082031 -4.578125 -3.21875 L -4.578125 -3.15625 C -4.578125 -2.863281 -4.46875 -2.625 -4.25 -2.4375 C -4.039062 -2.25 -3.773438 -2.113281 -3.453125 -2.03125 C -3.128906 -1.945312 -2.828125 -1.90625 -2.546875 -1.90625 L -0.734375 -1.90625 C -0.503906 -1.90625 -0.390625 -2.265625 -0.390625 -2.984375 L 0 -2.984375 Z M 0 -0.28125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-8">
<path style="stroke:none;" d="M 1.8125 -0.75 C 1.914062 -0.894531 1.96875 -1.050781 1.96875 -1.21875 C 1.96875 -1.675781 1.617188 -2.054688 0.921875 -2.359375 L 0 -2.734375 L -4.046875 -1.078125 C -4.179688 -1.015625 -4.265625 -0.910156 -4.296875 -0.765625 C -4.335938 -0.628906 -4.359375 -0.441406 -4.359375 -0.203125 L -4.75 -0.203125 L -4.75 -2.515625 L -4.359375 -2.515625 C -4.359375 -2.109375 -4.269531 -1.90625 -4.09375 -1.90625 C -4.0625 -1.90625 -4.039062 -1.910156 -4.03125 -1.921875 L -1.015625 -3.140625 L -3.734375 -4.25 C -3.785156 -4.269531 -3.847656 -4.28125 -3.921875 -4.28125 C -4.003906 -4.28125 -4.078125 -4.253906 -4.140625 -4.203125 C -4.210938 -4.160156 -4.265625 -4.097656 -4.296875 -4.015625 C -4.335938 -3.941406 -4.359375 -3.859375 -4.359375 -3.765625 L -4.75 -3.765625 L -4.75 -5.59375 L -4.359375 -5.59375 C -4.359375 -5.363281 -4.304688 -5.160156 -4.203125 -4.984375 C -4.097656 -4.816406 -3.941406 -4.6875 -3.734375 -4.59375 L 0.921875 -2.703125 C 1.160156 -2.597656 1.378906 -2.476562 1.578125 -2.34375 C 1.773438 -2.207031 1.9375 -2.039062 2.0625 -1.84375 C 2.1875 -1.65625 2.25 -1.445312 2.25 -1.21875 C 2.25 -0.945312 2.160156 -0.707031 1.984375 -0.5 C 1.804688 -0.300781 1.585938 -0.203125 1.328125 -0.203125 C 1.191406 -0.203125 1.078125 -0.25 0.984375 -0.34375 C 0.890625 -0.4375 0.84375 -0.550781 0.84375 -0.6875 C 0.84375 -0.78125 0.863281 -0.863281 0.90625 -0.9375 C 0.945312 -1.007812 1.003906 -1.066406 1.078125 -1.109375 C 1.148438 -1.148438 1.234375 -1.171875 1.328125 -1.171875 C 1.453125 -1.171875 1.554688 -1.128906 1.640625 -1.046875 C 1.734375 -0.972656 1.789062 -0.875 1.8125 -0.75 Z M 1.8125 -0.75 "/>
</symbol>
<symbol overflow="visible" id="glyph2-9">
<path style="stroke:none;" d="M 0 -0.359375 L -0.390625 -0.359375 C -0.390625 -1.117188 -0.503906 -1.5 -0.734375 -1.5 L -6.78125 -1.5 C -7.007812 -1.5 -7.125 -1.117188 -7.125 -0.359375 L -7.515625 -0.359375 L -7.515625 -4.28125 C -7.515625 -4.675781 -7.429688 -5.070312 -7.265625 -5.46875 C -7.097656 -5.875 -6.859375 -6.207031 -6.546875 -6.46875 C -6.234375 -6.726562 -5.867188 -6.859375 -5.453125 -6.859375 C -5.035156 -6.859375 -4.671875 -6.726562 -4.359375 -6.46875 C -4.054688 -6.207031 -3.828125 -5.878906 -3.671875 -5.484375 C -3.515625 -5.085938 -3.4375 -4.6875 -3.4375 -4.28125 L -3.4375 -2.515625 L -0.734375 -2.515625 C -0.503906 -2.515625 -0.390625 -2.894531 -0.390625 -3.65625 L 0 -3.65625 Z M -3.765625 -2.484375 L -3.765625 -3.984375 C -3.765625 -4.390625 -3.820312 -4.71875 -3.9375 -4.96875 C -4.050781 -5.21875 -4.226562 -5.398438 -4.46875 -5.515625 C -4.71875 -5.628906 -5.046875 -5.6875 -5.453125 -5.6875 C -6.046875 -5.6875 -6.472656 -5.554688 -6.734375 -5.296875 C -6.992188 -5.035156 -7.125 -4.597656 -7.125 -3.984375 L -7.125 -3.046875 C -7.125 -2.910156 -7.117188 -2.804688 -7.109375 -2.734375 C -7.097656 -2.660156 -7.066406 -2.597656 -7.015625 -2.546875 C -6.960938 -2.503906 -6.882812 -2.484375 -6.78125 -2.484375 Z M -3.765625 -2.484375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-10">
<path style="stroke:none;" d="M -1.328125 -1.125 L -4.359375 -1.125 L -4.359375 -0.203125 L -4.640625 -0.203125 C -4.640625 -0.679688 -4.863281 -1.035156 -5.3125 -1.265625 C -5.757812 -1.492188 -6.242188 -1.609375 -6.765625 -1.609375 L -6.765625 -1.921875 L -4.75 -1.921875 L -4.75 -3.46875 L -4.359375 -3.46875 L -4.359375 -1.921875 L -1.34375 -1.921875 C -1.039062 -1.921875 -0.773438 -1.972656 -0.546875 -2.078125 C -0.316406 -2.179688 -0.203125 -2.363281 -0.203125 -2.625 C -0.203125 -2.875 -0.320312 -3.050781 -0.5625 -3.15625 C -0.800781 -3.269531 -1.0625 -3.328125 -1.34375 -3.328125 L -2 -3.328125 L -2 -3.65625 L -1.328125 -3.65625 C -1.097656 -3.65625 -0.867188 -3.613281 -0.640625 -3.53125 C -0.421875 -3.445312 -0.238281 -3.320312 -0.09375 -3.15625 C 0.0507812 -2.988281 0.125 -2.785156 0.125 -2.546875 C 0.125 -2.109375 -0.00390625 -1.757812 -0.265625 -1.5 C -0.535156 -1.25 -0.890625 -1.125 -1.328125 -1.125 Z M -1.328125 -1.125 "/>
</symbol>
</g>
</defs>
<g id="surface1">
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 36.121094 146.679688 L 178.628906 146.679688 L 178.628906 4.171875 L 36.121094 4.171875 Z M 36.121094 146.679688 "/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 145.501688 419.000038 L 145.501688 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 221.897522 419.000038 L 221.897522 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 298.303827 419.000038 L 298.303827 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 374.699661 419.000038 L 374.699661 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 451.095494 419.000038 L 451.095494 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.501799 419.000038 L 145.501688 419.000038 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.501799 342.604207 L 145.501688 342.604207 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.501799 266.197905 L 145.501688 266.197905 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.501799 189.802074 L 145.501688 189.802074 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.501799 113.395772 L 145.501688 113.395772 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.501799 36.999941 L 145.501688 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 419.000038 L 527.501799 419.000038 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 36.999941 L 527.501799 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 419.000038 L 145.501688 415.178152 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 221.897522 419.000038 L 221.897522 415.178152 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.303827 419.000038 L 298.303827 415.178152 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 374.699661 419.000038 L 374.699661 415.178152 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 451.095494 419.000038 L 451.095494 415.178152 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 36.999941 L 145.501688 40.821827 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 221.897522 36.999941 L 221.897522 40.821827 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.303827 36.999941 L 298.303827 40.821827 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 374.699661 36.999941 L 374.699661 40.821827 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 451.095494 36.999941 L 451.095494 40.821827 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="25.564892" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="28.89822" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="33.898235" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="36.676021" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="41.676037" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="54.066449" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="57.399777" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="62.399792" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="65.177579" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="70.177594" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="90.623568" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="112.736215" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="117.73623" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="120.514017" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="125.514032" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="141.237767" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="146.237782" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="149.015569" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="154.015584" y="159.07964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-1" x="84.136884" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-2" x="92.23411" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-3" x="97.122997" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-4" x="102.623014" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-5" x="109.34524" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-3" x="116.525805" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-6" x="122.025822" y="172.91964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-7" x="126.334162" y="172.91964"/>
</g>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 419.000038 L 145.501688 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 419.000038 L 527.501799 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 419.000038 L 149.323574 419.000038 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 342.604207 L 149.323574 342.604207 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 266.197905 L 149.323574 266.197905 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 189.802074 L 149.323574 189.802074 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 113.395772 L 149.323574 113.395772 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.501688 36.999941 L 149.323574 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 419.000038 L 523.679913 419.000038 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 342.604207 L 523.679913 342.604207 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 266.197905 L 523.679913 266.197905 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 189.802074 L 523.679913 189.802074 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 113.395772 L 523.679913 113.395772 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.501799 36.999941 L 523.679913 36.999941 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="27.120452" y="149.079637"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="14.342634" y="120.578084"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="19.34265" y="120.578084"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="22.120437" y="120.578084"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="27.120452" y="120.578084"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="14.342634" y="92.076531"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="19.34265" y="92.076531"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="22.120437" y="92.076531"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="27.120452" y="92.076531"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="14.342634" y="63.574972"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="19.34265" y="63.574972"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="22.120437" y="63.574972"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="27.120452" y="63.574972"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="14.342634" y="35.073419"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="19.34265" y="35.073419"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="22.120437" y="35.073419"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-7" x="27.120452" y="35.073419"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="19.34265" y="6.571859"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="24.342666" y="6.571859"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-8" x="27.120452" y="6.571859"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-1" x="7.382595" y="112.35219"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-2" x="7.382595" y="108.379964"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.382595" y="99.21327"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-4" x="7.382595" y="93.713252"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-5" x="7.382594" y="88.213236"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-6" x="7.382594" y="85.15767"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.382594" y="79.046539"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-7" x="7.382594" y="73.546522"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-8" x="7.382593" y="69.238183"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-9" x="7.382593" y="59.76594"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.382593" y="52.585374"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-7" x="7.382592" y="47.085356"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-10" x="7.382592" y="42.777019"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,44.709778%,74.119568%);fill-opacity:1;" d="M 93.125 1.921875 C 94.367188 1.921875 95.375 2.929688 95.375 4.171875 C 95.375 5.414062 94.367188 6.421875 93.125 6.421875 C 91.882812 6.421875 90.875 5.414062 90.875 4.171875 C 90.875 2.929688 91.882812 1.921875 93.125 1.921875 Z M 93.125 0.421875 C 91.054688 0.421875 89.375 2.101562 89.375 4.171875 C 89.375 6.242188 91.054688 7.921875 93.125 7.921875 C 95.195312 7.921875 96.875 6.242188 96.875 4.171875 C 96.875 2.101562 95.195312 0.421875 93.125 0.421875 Z M 93.125 0.421875 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,44.709778%,74.119568%);fill-opacity:1;" d="M 93.125 1.921875 C 94.367188 1.921875 95.375 2.929688 95.375 4.171875 C 95.375 5.414062 94.367188 6.421875 93.125 6.421875 C 91.878906 6.421875 90.875 5.414062 90.875 4.171875 C 90.875 2.929688 91.878906 1.921875 93.125 1.921875 Z M 93.125 0.421875 C 91.050781 0.421875 89.375 2.101562 89.375 4.171875 C 89.375 6.242188 91.050781 7.921875 93.125 7.921875 C 95.195312 7.921875 96.875 6.242188 96.875 4.171875 C 96.875 2.101562 95.195312 0.421875 93.125 0.421875 Z M 93.125 0.421875 "/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(0%,44.709778%,74.119568%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.68078 419.000038 L 299.277622 419.000038 L 299.319506 418.989567 L 300.000116 418.989567 L 300.073412 418.979096 L 300.439894 418.979096 L 300.544604 418.968625 L 300.869202 418.968625 L 300.994853 418.958154 L 301.256626 418.958154 L 301.392748 418.947683 L 301.539341 418.947683 L 301.696405 418.937212 L 301.853469 418.937212 L 302.021003 418.926741 L 302.199009 418.91627 L 302.387486 418.91627 L 302.575962 418.9058 L 302.994799 418.884858 L 303.214688 418.874387 L 303.445049 418.863916 L 303.696351 418.842974 L 303.947653 418.832503 L 304.209426 418.811561 L 304.492141 418.80109 L 304.785326 418.780149 L 305.088983 418.759207 L 305.413582 418.727794 L 305.748651 418.706852 L 306.094191 418.675439 L 306.460674 418.644027 L 306.848098 418.612614 L 307.256464 418.57073 L 307.6753 418.539317 L 308.115079 418.486963 L 308.575799 418.445079 L 309.057462 418.382254 L 309.570537 418.329899 L 310.094083 418.267073 L 310.649042 418.193777 L 311.224942 418.11001 L 311.832256 418.026242 L 312.460511 417.932004 L 313.120179 417.837766 L 313.81126 417.722586 L 314.533753 417.596935 L 315.287659 417.460813 L 316.072978 417.31422 L 316.900181 417.157156 L 317.758796 416.97915 L 318.648825 416.790674 L 319.580737 416.581255 L 320.554532 416.350895 L 321.570211 416.099593 L 322.627774 415.827349 L 323.727221 415.534163 L 324.879022 415.209565 L 326.072707 414.853554 L 327.308276 414.46613 L 328.596199 414.047293 L 329.936477 413.597043 L 331.318638 413.10491 L 332.763625 412.560422 L 334.250496 411.974051 L 335.789721 411.345795 L 337.381301 410.654715 L 339.025235 409.911279 L 340.721525 409.105019 L 342.470168 408.235932 L 344.260696 407.30402 L 346.103577 406.298812 L 347.998814 405.209836 L 349.925463 404.047564 L 351.904467 402.801525 L 353.925355 401.461247 L 355.977655 400.026731 L 358.061368 398.508448 L 360.176494 396.874984 L 362.323033 395.147282 L 364.480042 393.314872 L 366.657994 391.377751 L 368.835945 389.325451 L 371.024368 387.157971 L 373.21279 384.885781 L 375.390741 382.498411 L 377.558222 379.995862 L 379.69429 377.378132 L 381.809415 374.645221 L 383.893129 371.797131 L 385.945429 368.844332 L 387.945375 365.786823 L 389.892966 362.624606 L 391.777731 359.368149 L 393.610142 356.006984 L 395.379728 352.551581 L 397.065546 349.01241 L 398.688539 345.389472 L 400.227764 341.693237 L 401.683222 337.923706 L 403.054912 334.080878 L 404.342836 330.185696 L 405.536521 326.227688 L 406.646438 322.227797 L 407.662117 318.186022 L 408.583558 314.102363 L 409.410761 309.987292 L 410.154196 305.840807 L 410.803393 301.683852 L 411.358352 297.505955 L 411.819073 293.328058 L 412.196026 289.13969 L 412.489212 284.940851 L 412.688159 280.762954 L 412.803339 276.585057 L 412.845223 272.417631 L 412.803339 268.271147 L 412.688159 264.145605 L 412.499683 260.041004 L 412.237909 255.967816 L 411.90284 251.926041 L 411.504945 247.915679 L 411.044225 243.936729 L 410.520679 239.999664 L 409.944778 236.104481 L 409.306052 232.251183 L 408.625442 228.439768 L 407.892478 224.670237 L 407.107159 220.95306 L 406.279956 217.277768 L 405.41087 213.654829 L 404.499899 210.084246 L 403.557517 206.566017 L 402.583721 203.100142 L 401.578513 199.686622 L 400.541892 196.325457 L 399.473858 193.016646 L 398.384882 189.76019 L 397.274965 186.556089 L 396.144105 183.404342 L 394.992304 180.315421 L 393.830032 177.278854 L 392.646818 174.284171 L 391.453133 171.352313 L 390.248977 168.47281 L 389.044821 165.645662 L 387.819724 162.870868 L 386.594626 160.148429 L 385.359057 157.478344 L 384.123489 154.860615 L 382.877449 152.295239 L 381.641881 149.771747 L 380.395841 147.30061 L 379.160273 144.881828 L 377.924704 142.5154 L 376.689135 140.190856 L 375.453567 137.908195 L 374.228469 135.677889 L 373.003371 133.499938 L 371.788745 131.3534 L 370.584589 129.259216 L 369.380433 127.206915 L 368.197219 125.196499 L 367.014005 123.227966 L 365.841262 121.311787 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(0%,44.709778%,74.119568%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.68078 419.000038 L 299.277622 419.000038 L 299.319506 419.010509 L 300.000116 419.010509 L 300.073412 419.02098 L 300.439894 419.02098 L 300.544604 419.031451 L 300.869202 419.031451 L 300.994853 419.041922 L 301.235684 419.041922 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(85.099792%,32.548523%,9.799194%);fill-opacity:1;" d="M 93.125 102.691406 C 94.367188 102.691406 95.375 103.699219 95.375 104.941406 C 95.375 106.183594 94.367188 107.191406 93.125 107.191406 C 91.882812 107.191406 90.875 106.183594 90.875 104.941406 C 90.875 103.699219 91.882812 102.691406 93.125 102.691406 Z M 93.125 101.191406 C 91.050781 101.191406 89.375 102.867188 89.375 104.941406 C 89.375 107.011719 91.050781 108.691406 93.125 108.691406 C 95.195312 108.691406 96.875 107.011719 96.875 104.941406 C 96.875 102.867188 95.195312 101.191406 93.125 101.191406 Z M 93.125 101.191406 "/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(85.099792%,32.548523%,9.799194%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.492303 419.000038 L 298.973966 419.000038 L 299.005378 418.989567 L 299.47657 418.989567 L 299.528924 418.979096 L 299.843052 418.979096 L 299.916348 418.968625 L 300.167651 418.968625 L 300.251418 418.958154 L 300.345656 418.958154 L 300.439894 418.947683 L 300.544604 418.947683 L 300.649313 418.937212 L 300.754022 418.937212 L 300.869202 418.926741 L 300.994853 418.926741 L 301.120504 418.91627 L 301.392748 418.895329 L 301.539341 418.884858 L 301.853469 418.863916 L 302.021003 418.853445 L 302.199009 418.842974 L 302.387486 418.822032 L 302.575962 418.811561 L 302.77491 418.790619 L 302.984328 418.769678 L 303.214688 418.748736 L 303.445049 418.717323 L 303.68588 418.696381 L 303.937182 418.664968 L 304.198955 418.633556 L 304.48167 418.602143 L 304.764385 418.560259 L 305.068041 418.518376 L 305.382169 418.466021 L 305.717238 418.413666 L 306.062779 418.361312 L 306.429261 418.298486 L 306.806214 418.235661 L 307.204109 418.162364 L 307.612475 418.078597 L 308.041783 417.99483 L 308.492032 417.900591 L 308.963224 417.785411 L 309.455357 417.680702 L 309.957961 417.555051 L 310.491978 417.408458 L 311.046937 417.261865 L 311.622837 417.09433 L 312.230151 416.916325 L 312.847935 416.727848 L 313.497132 416.507959 L 314.177742 416.277599 L 314.879293 416.026297 L 315.601787 415.754053 L 316.355693 415.450396 L 317.141012 415.125798 L 317.947273 414.780257 L 318.784947 414.392833 L 319.643562 413.973996 L 320.523119 413.523747 L 321.44456 413.042084 L 322.376472 412.518538 L 323.339797 411.953109 L 324.324063 411.335325 L 325.329272 410.675657 L 326.355422 409.974105 L 327.402514 409.209728 L 328.470548 408.403467 L 329.538582 407.534381 L 330.627557 406.602469 L 331.727004 405.618202 L 332.81598 404.560639 L 333.915426 403.450722 L 335.014873 402.267508 L 336.103849 401.021469 L 337.182353 399.702133 L 338.250387 398.319971 L 339.287008 396.864513 L 340.302688 395.34623 L 341.286954 393.765121 L 342.239808 392.110716 L 343.150778 390.403956 L 344.019864 388.623899 L 344.836596 386.791488 L 345.600973 384.906723 L 346.302525 382.969603 L 346.951722 380.980128 L 347.527623 378.95924 L 348.040698 376.885998 L 348.480476 374.781343 L 348.85743 372.655747 L 349.140144 370.498737 L 349.360034 368.331257 L 349.496156 366.153306 L 349.558981 363.964883 L 349.538039 361.776461 L 349.443801 359.588039 L 349.265795 357.420558 L 349.014493 355.263549 L 348.689895 353.127481 L 348.292 351.022826 L 347.820808 348.949584 L 347.286791 346.907755 L 346.689949 344.907809 L 346.01981 342.949747 L 345.307788 341.054511 L 344.532939 339.190687 L 343.716208 337.40016 L 342.847121 335.651516 L 341.946622 333.976169 L 341.004239 332.353176 L 340.019973 330.793009 L 339.025235 329.306139 L 337.999085 327.871623 L 336.951993 326.510403 L 335.89443 325.212009 L 334.826396 323.97644 L 333.747892 322.814168 L 332.669387 321.704251 L 331.590882 320.657159 L 330.512377 319.672892 L 329.444343 318.751452 L 328.386781 317.882365 L 327.350159 317.065633 L 326.313538 316.301256 L 325.30833 315.599705 L 324.313593 314.929566 L 323.339797 314.311781 L 322.386943 313.746352 L 321.455031 313.212335 L 320.554532 312.720202 L 319.674975 312.259481 L 318.816359 311.840644 L 317.989157 311.442749 L 317.182896 311.086738 L 316.408048 310.751669 L 315.654142 310.448012 L 314.931648 310.165297 L 314.230096 309.903524 L 313.559957 309.673164 L 312.91076 309.453275 L 312.282505 309.254327 L 311.685663 309.065851 L 311.109762 308.898316 L 310.554803 308.741252 L 310.020786 308.60513 L 309.507711 308.469008 L 309.015578 308.353828 L 308.544387 308.249119 L 308.094137 308.14441 L 307.664829 308.060642 L 307.245993 307.976875 L 306.848098 307.903579 L 306.471145 307.830282 L 306.104662 307.767457 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(85.099792%,32.548523%,9.799194%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.492303 419.000038 L 299.005378 419.000038 L 299.036791 419.010509 L 299.47657 419.010509 L 299.528924 419.02098 L 299.843052 419.02098 L 299.916348 419.031451 L 300.167651 419.031451 L 300.251418 419.041922 L 300.377069 419.041922 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(92.939758%,69.40918%,12.548828%);fill-opacity:1;" d="M 93.125 112.402344 C 94.367188 112.402344 95.375 113.410156 95.375 114.652344 C 95.375 115.894531 94.367188 116.902344 93.125 116.902344 C 91.882812 116.902344 90.875 115.894531 90.875 114.652344 C 90.875 113.410156 91.882812 112.402344 93.125 112.402344 Z M 93.125 110.902344 C 91.050781 110.902344 89.375 112.582031 89.375 114.652344 C 89.375 116.722656 91.050781 118.402344 93.125 118.402344 C 95.195312 118.402344 96.875 116.722656 96.875 114.652344 C 96.875 112.582031 95.195312 110.902344 93.125 110.902344 Z M 93.125 110.902344 "/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(92.939758%,69.40918%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.104879 419.000038 L 297.591804 419.000038 L 297.560391 418.989567 L 297.131084 418.989567 L 297.068258 418.979096 L 296.754131 418.979096 L 296.680834 418.968625 L 296.440003 418.968625 L 296.345765 418.958154 L 296.251526 418.958154 L 296.157288 418.947683 L 295.94787 418.947683 L 295.843161 418.937212 L 295.72798 418.926741 L 295.602329 418.926741 L 295.476678 418.91627 L 295.204434 418.895329 L 295.057841 418.895329 L 294.900778 418.874387 L 294.743714 418.863916 L 294.576179 418.853445 L 294.398174 418.842974 L 294.209697 418.822032 L 294.02122 418.811561 L 293.822273 418.790619 L 293.382494 418.748736 L 293.152134 418.727794 L 292.911303 418.696381 L 292.660001 418.664968 L 292.115513 418.602143 L 291.822327 418.560259 L 291.51867 418.518376 L 291.204543 418.476492 L 290.869473 418.424137 L 290.523933 418.361312 L 290.157451 418.298486 L 289.780498 418.235661 L 289.382603 418.162364 L 288.963766 418.078597 L 288.523987 417.99483 L 288.073738 417.900591 L 287.602546 417.785411 L 287.099942 417.670231 L 286.586867 417.54458 L 286.05285 417.408458 L 285.48742 417.251394 L 284.901049 417.08386 L 284.293736 416.905854 L 283.655009 416.706906 L 282.995341 416.487017 L 282.304261 416.246186 L 281.581767 415.984413 L 280.838332 415.691227 L 280.073955 415.387571 L 279.267694 415.04203 L 278.440491 414.665077 L 277.581876 414.256711 L 276.691847 413.816933 L 275.770406 413.33527 L 274.828024 412.811724 L 273.864699 412.235824 L 272.859491 411.618039 L 271.843811 410.93743 L 270.796719 410.204465 L 269.728686 409.419146 L 268.650181 408.560531 L 267.561205 407.628619 L 266.451287 406.633882 L 265.34137 405.555377 L 264.231452 404.403576 L 263.132006 403.157536 L 262.04303 401.8382 L 260.974996 400.424626 L 259.938375 398.927285 L 258.933167 397.335705 L 257.980313 395.660358 L 257.079814 393.901243 L 256.252611 392.04789 L 255.498705 390.131712 L 254.839037 388.131766 L 254.263136 386.068995 L 253.791945 383.96434 L 253.435934 381.807331 L 253.195103 379.618908 L 253.069451 377.409544 L 253.058981 375.189709 L 253.174161 372.980345 L 253.404521 370.791923 L 253.750061 368.634914 L 254.210782 366.519788 L 254.765741 364.467487 L 255.425409 362.467542 L 256.158373 360.540892 L 256.975105 358.68754 L 257.854662 356.917954 L 258.797045 355.232136 L 259.781311 353.640556 L 260.807462 352.132744 L 261.865024 350.708699 L 262.943529 349.368421 L 264.032505 348.111911 L 265.131952 346.949639 L 266.231398 345.860663 L 267.330845 344.844984 L 268.41982 343.902601 L 269.498325 343.023044 L 270.566359 342.216783 L 271.60298 341.473348 L 272.62913 340.782267 L 273.623868 340.143541 L 274.597663 339.557169 L 275.540046 339.012681 L 276.461487 338.520548 L 277.351515 338.059828 L 278.210131 337.640991 L 279.047805 337.264038 L 279.854065 336.908026 L 280.628913 336.583428 L 281.38282 336.290242 L 282.105313 336.017998 L 282.796394 335.766696 L 283.466533 335.546807 L 284.105259 335.337388 L 284.723043 335.148912 L 285.319886 334.970906 L 285.885315 334.813843 L 286.429803 334.66725 L 286.953349 334.531128 L 287.455953 334.415948 L 287.937616 334.300767 L 288.387865 334.206529 L 288.827644 334.112291 L 289.256952 334.028524 L 289.654847 333.955227 L 290.042271 333.881931 L 290.408753 333.819105 L 290.764764 333.75628 L 291.099834 333.703925 L 291.424432 333.65157 L 291.728089 333.609687 L 292.021275 333.567803 L 292.303989 333.53639 L 292.576233 333.504978 L 292.838006 333.473565 L 293.078838 333.442152 L 293.309198 333.410739 L 293.539558 333.389797 L 293.958395 333.347914 L 294.157342 333.337443 L 294.335348 333.316501 L 294.523825 333.30603 L 294.691359 333.285088 L 294.848423 333.274617 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(92.939758%,69.40918%,12.548828%);stroke-opacity:1;stroke-miterlimit:10;" d="M 298.104879 419.000038 L 297.591804 419.000038 L 297.560391 419.010509 L 297.068258 419.010509 L 297.015904 419.02098 L 296.754131 419.02098 L 296.680834 419.031451 L 296.440003 419.031451 L 296.345765 419.041922 L 296.209643 419.041922 " transform="matrix(0.373057,0,0,0.373057,-18.159328,-9.631212)"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 70 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 162 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 148 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 319 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 118 KiB

View File

@ -0,0 +1,303 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="190pt" height="172pt" viewBox="0 0 190 172" version="1.2">
<defs>
<g>
<symbol overflow="visible" id="glyph0-0">
<path style="stroke:none;" d="M 0.328125 0 L 0.328125 -6.671875 L 2.984375 -6.671875 L 2.984375 0 Z M 0.671875 -0.328125 L 2.65625 -0.328125 L 2.65625 -6.328125 L 0.671875 -6.328125 Z M 0.671875 -0.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph0-1">
<path style="stroke:none;" d="M 0.109375 -1.84375 L 0.109375 -2.46875 L 2.765625 -2.46875 L 2.765625 -1.84375 Z M 0.109375 -1.84375 "/>
</symbol>
<symbol overflow="visible" id="glyph0-2">
<path style="stroke:none;" d="M 2.5 0.21875 C 1.6875 0.21875 1.128906 -0.113281 0.828125 -0.78125 C 0.535156 -1.457031 0.390625 -2.257812 0.390625 -3.1875 C 0.390625 -3.769531 0.441406 -4.316406 0.546875 -4.828125 C 0.648438 -5.335938 0.859375 -5.769531 1.171875 -6.125 C 1.492188 -6.476562 1.9375 -6.65625 2.5 -6.65625 C 2.9375 -6.65625 3.296875 -6.546875 3.578125 -6.328125 C 3.859375 -6.117188 4.070312 -5.84375 4.21875 -5.5 C 4.363281 -5.164062 4.460938 -4.800781 4.515625 -4.40625 C 4.566406 -4.019531 4.59375 -3.613281 4.59375 -3.1875 C 4.59375 -2.613281 4.539062 -2.078125 4.4375 -1.578125 C 4.332031 -1.078125 4.125 -0.648438 3.8125 -0.296875 C 3.507812 0.046875 3.070312 0.21875 2.5 0.21875 Z M 2.5 -0.046875 C 2.875 -0.046875 3.148438 -0.234375 3.328125 -0.609375 C 3.515625 -0.992188 3.628906 -1.414062 3.671875 -1.875 C 3.710938 -2.332031 3.734375 -2.820312 3.734375 -3.34375 C 3.734375 -3.851562 3.710938 -4.316406 3.671875 -4.734375 C 3.628906 -5.160156 3.515625 -5.546875 3.328125 -5.890625 C 3.148438 -6.234375 2.875 -6.40625 2.5 -6.40625 C 2.125 -6.40625 1.84375 -6.226562 1.65625 -5.875 C 1.476562 -5.53125 1.367188 -5.148438 1.328125 -4.734375 C 1.285156 -4.316406 1.265625 -3.851562 1.265625 -3.34375 C 1.265625 -2.976562 1.269531 -2.628906 1.28125 -2.296875 C 1.300781 -1.972656 1.347656 -1.632812 1.421875 -1.28125 C 1.503906 -0.925781 1.632812 -0.628906 1.8125 -0.390625 C 1.988281 -0.160156 2.21875 -0.046875 2.5 -0.046875 Z M 2.5 -0.046875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-3">
<path style="stroke:none;" d="M 0.84375 -0.546875 C 0.84375 -0.703125 0.894531 -0.832031 1 -0.9375 C 1.113281 -1.039062 1.242188 -1.09375 1.390625 -1.09375 C 1.484375 -1.09375 1.570312 -1.066406 1.65625 -1.015625 C 1.75 -0.972656 1.816406 -0.90625 1.859375 -0.8125 C 1.910156 -0.726562 1.9375 -0.640625 1.9375 -0.546875 C 1.9375 -0.398438 1.878906 -0.269531 1.765625 -0.15625 C 1.660156 -0.0507812 1.535156 0 1.390625 0 C 1.242188 0 1.113281 -0.0507812 1 -0.15625 C 0.894531 -0.269531 0.84375 -0.398438 0.84375 -0.546875 Z M 0.84375 -0.546875 "/>
</symbol>
<symbol overflow="visible" id="glyph0-4">
<path style="stroke:none;" d="M 0.5 0 L 0.5 -0.265625 C 0.5 -0.285156 0.503906 -0.304688 0.515625 -0.328125 L 2.078125 -2.046875 C 2.304688 -2.296875 2.492188 -2.503906 2.640625 -2.671875 C 2.785156 -2.847656 2.929688 -3.046875 3.078125 -3.265625 C 3.222656 -3.492188 3.335938 -3.722656 3.421875 -3.953125 C 3.503906 -4.191406 3.546875 -4.441406 3.546875 -4.703125 C 3.546875 -4.972656 3.492188 -5.234375 3.390625 -5.484375 C 3.285156 -5.734375 3.132812 -5.929688 2.9375 -6.078125 C 2.738281 -6.234375 2.5 -6.3125 2.21875 -6.3125 C 1.925781 -6.3125 1.660156 -6.222656 1.421875 -6.046875 C 1.191406 -5.867188 1.03125 -5.644531 0.9375 -5.375 C 0.96875 -5.375 1.003906 -5.375 1.046875 -5.375 C 1.203125 -5.375 1.332031 -5.320312 1.4375 -5.21875 C 1.539062 -5.125 1.59375 -5 1.59375 -4.84375 C 1.59375 -4.6875 1.539062 -4.554688 1.4375 -4.453125 C 1.332031 -4.347656 1.203125 -4.296875 1.046875 -4.296875 C 0.890625 -4.296875 0.757812 -4.347656 0.65625 -4.453125 C 0.550781 -4.566406 0.5 -4.695312 0.5 -4.84375 C 0.5 -5.09375 0.546875 -5.328125 0.640625 -5.546875 C 0.734375 -5.765625 0.867188 -5.957031 1.046875 -6.125 C 1.222656 -6.300781 1.421875 -6.429688 1.640625 -6.515625 C 1.867188 -6.609375 2.109375 -6.65625 2.359375 -6.65625 C 2.742188 -6.65625 3.097656 -6.570312 3.421875 -6.40625 C 3.753906 -6.25 4.015625 -6.023438 4.203125 -5.734375 C 4.398438 -5.441406 4.5 -5.097656 4.5 -4.703125 C 4.5 -4.410156 4.429688 -4.132812 4.296875 -3.875 C 4.171875 -3.613281 4.007812 -3.375 3.8125 -3.15625 C 3.613281 -2.945312 3.359375 -2.707031 3.046875 -2.4375 C 2.742188 -2.164062 2.539062 -1.988281 2.4375 -1.90625 L 1.3125 -0.8125 L 2.265625 -0.8125 C 2.742188 -0.8125 3.140625 -0.8125 3.453125 -0.8125 C 3.773438 -0.820312 3.941406 -0.835938 3.953125 -0.859375 C 4.035156 -0.941406 4.117188 -1.25 4.203125 -1.78125 L 4.5 -1.78125 L 4.203125 0 Z M 0.5 0 "/>
</symbol>
<symbol overflow="visible" id="glyph0-5">
<path style="stroke:none;" d="M 0.921875 0 L 0.921875 -0.359375 C 1.753906 -0.359375 2.171875 -0.460938 2.171875 -0.671875 L 2.171875 -5.921875 C 1.828125 -5.753906 1.394531 -5.671875 0.875 -5.671875 L 0.875 -6.015625 C 1.6875 -6.015625 2.300781 -6.226562 2.71875 -6.65625 L 2.859375 -6.65625 C 2.878906 -6.65625 2.898438 -6.644531 2.921875 -6.625 C 2.941406 -6.613281 2.953125 -6.597656 2.953125 -6.578125 L 2.953125 -0.671875 C 2.953125 -0.460938 3.367188 -0.359375 4.203125 -0.359375 L 4.203125 0 Z M 0.921875 0 "/>
</symbol>
<symbol overflow="visible" id="glyph0-6">
<path style="stroke:none;" d="M 0.875 -1.140625 C 0.9375 -0.941406 1.035156 -0.757812 1.171875 -0.59375 C 1.316406 -0.4375 1.488281 -0.3125 1.6875 -0.21875 C 1.882812 -0.132812 2.085938 -0.09375 2.296875 -0.09375 C 2.773438 -0.09375 3.101562 -0.28125 3.28125 -0.65625 C 3.46875 -1.03125 3.5625 -1.484375 3.5625 -2.015625 C 3.5625 -2.253906 3.554688 -2.453125 3.546875 -2.609375 C 3.535156 -2.765625 3.515625 -2.914062 3.484375 -3.0625 C 3.421875 -3.289062 3.3125 -3.492188 3.15625 -3.671875 C 3 -3.847656 2.8125 -3.9375 2.59375 -3.9375 C 2.363281 -3.9375 2.164062 -3.898438 2 -3.828125 C 1.84375 -3.765625 1.710938 -3.6875 1.609375 -3.59375 C 1.515625 -3.507812 1.425781 -3.414062 1.34375 -3.3125 C 1.269531 -3.207031 1.222656 -3.15625 1.203125 -3.15625 L 1.09375 -3.15625 C 1.070312 -3.15625 1.046875 -3.164062 1.015625 -3.1875 C 0.992188 -3.207031 0.984375 -3.226562 0.984375 -3.25 L 0.984375 -6.578125 C 0.984375 -6.597656 0.992188 -6.613281 1.015625 -6.625 C 1.046875 -6.644531 1.070312 -6.65625 1.09375 -6.65625 L 1.125 -6.65625 C 1.570312 -6.445312 2.046875 -6.34375 2.546875 -6.34375 C 3.046875 -6.34375 3.523438 -6.445312 3.984375 -6.65625 L 4.015625 -6.65625 C 4.035156 -6.65625 4.054688 -6.644531 4.078125 -6.625 C 4.097656 -6.613281 4.109375 -6.597656 4.109375 -6.578125 L 4.109375 -6.484375 C 4.109375 -6.453125 4.097656 -6.4375 4.078125 -6.4375 C 3.847656 -6.132812 3.5625 -5.898438 3.21875 -5.734375 C 2.875 -5.566406 2.519531 -5.484375 2.15625 -5.484375 C 1.894531 -5.484375 1.625 -5.519531 1.34375 -5.59375 L 1.34375 -3.703125 C 1.5625 -3.878906 1.753906 -4.003906 1.921875 -4.078125 C 2.097656 -4.160156 2.320312 -4.203125 2.59375 -4.203125 C 2.96875 -4.203125 3.300781 -4.09375 3.59375 -3.875 C 3.882812 -3.664062 4.109375 -3.390625 4.265625 -3.046875 C 4.421875 -2.710938 4.5 -2.367188 4.5 -2.015625 C 4.5 -1.609375 4.398438 -1.234375 4.203125 -0.890625 C 4.003906 -0.554688 3.734375 -0.285156 3.390625 -0.078125 C 3.054688 0.117188 2.691406 0.21875 2.296875 0.21875 C 1.960938 0.21875 1.65625 0.132812 1.375 -0.03125 C 1.101562 -0.195312 0.890625 -0.421875 0.734375 -0.703125 C 0.578125 -0.992188 0.5 -1.300781 0.5 -1.625 C 0.5 -1.78125 0.546875 -1.90625 0.640625 -2 C 0.742188 -2.09375 0.867188 -2.140625 1.015625 -2.140625 C 1.160156 -2.140625 1.28125 -2.085938 1.375 -1.984375 C 1.476562 -1.890625 1.53125 -1.769531 1.53125 -1.625 C 1.53125 -1.488281 1.476562 -1.367188 1.375 -1.265625 C 1.28125 -1.171875 1.160156 -1.125 1.015625 -1.125 C 0.992188 -1.125 0.96875 -1.125 0.9375 -1.125 C 0.90625 -1.132812 0.882812 -1.140625 0.875 -1.140625 Z M 0.875 -1.140625 "/>
</symbol>
<symbol overflow="visible" id="glyph1-0">
<path style="stroke:none;" d="M 0.359375 0 L 0.359375 -7.328125 L 3.28125 -7.328125 L 3.28125 0 Z M 0.734375 -0.359375 L 2.921875 -0.359375 L 2.921875 -6.96875 L 0.734375 -6.96875 Z M 0.734375 -0.359375 "/>
</symbol>
<symbol overflow="visible" id="glyph1-1">
<path style="stroke:none;" d="M 0.359375 0 L 0.359375 -0.390625 C 1.117188 -0.390625 1.5 -0.503906 1.5 -0.734375 L 1.5 -6.78125 C 1.5 -7.007812 1.117188 -7.125 0.359375 -7.125 L 0.359375 -7.515625 L 3.8125 -7.515625 C 4.226562 -7.515625 4.660156 -7.4375 5.109375 -7.28125 C 5.566406 -7.132812 5.945312 -6.910156 6.25 -6.609375 C 6.550781 -6.304688 6.703125 -5.941406 6.703125 -5.515625 C 6.703125 -5.210938 6.609375 -4.9375 6.421875 -4.6875 C 6.242188 -4.445312 6.007812 -4.242188 5.71875 -4.078125 C 5.4375 -3.921875 5.144531 -3.804688 4.84375 -3.734375 C 5.164062 -3.617188 5.453125 -3.4375 5.703125 -3.1875 C 5.953125 -2.9375 6.101562 -2.648438 6.15625 -2.328125 L 6.3125 -1.359375 C 6.375 -0.910156 6.445312 -0.578125 6.53125 -0.359375 C 6.613281 -0.148438 6.785156 -0.046875 7.046875 -0.046875 C 7.273438 -0.046875 7.445312 -0.148438 7.5625 -0.359375 C 7.675781 -0.578125 7.734375 -0.8125 7.734375 -1.0625 C 7.734375 -1.082031 7.742188 -1.101562 7.765625 -1.125 C 7.785156 -1.144531 7.8125 -1.15625 7.84375 -1.15625 L 7.9375 -1.15625 C 8.007812 -1.15625 8.046875 -1.109375 8.046875 -1.015625 C 8.046875 -0.804688 8.003906 -0.609375 7.921875 -0.421875 C 7.847656 -0.234375 7.738281 -0.078125 7.59375 0.046875 C 7.445312 0.171875 7.269531 0.234375 7.0625 0.234375 C 6.53125 0.234375 6.070312 0.101562 5.6875 -0.15625 C 5.3125 -0.414062 5.125 -0.800781 5.125 -1.3125 L 5.125 -2.28125 C 5.125 -2.65625 4.992188 -2.972656 4.734375 -3.234375 C 4.484375 -3.492188 4.175781 -3.625 3.8125 -3.625 L 2.484375 -3.625 L 2.484375 -0.734375 C 2.484375 -0.503906 2.863281 -0.390625 3.625 -0.390625 L 3.625 0 Z M 2.484375 -3.90625 L 3.65625 -3.90625 C 4.269531 -3.90625 4.734375 -4.023438 5.046875 -4.265625 C 5.367188 -4.515625 5.53125 -4.929688 5.53125 -5.515625 C 5.53125 -6.097656 5.375 -6.507812 5.0625 -6.75 C 4.75 -7 4.28125 -7.125 3.65625 -7.125 L 3.046875 -7.125 C 2.910156 -7.125 2.804688 -7.117188 2.734375 -7.109375 C 2.660156 -7.097656 2.597656 -7.066406 2.546875 -7.015625 C 2.503906 -6.960938 2.484375 -6.882812 2.484375 -6.78125 Z M 2.484375 -3.90625 "/>
</symbol>
<symbol overflow="visible" id="glyph1-2">
<path style="stroke:none;" d="M 2.734375 0.125 C 2.285156 0.125 1.875 0.0078125 1.5 -0.21875 C 1.132812 -0.457031 0.84375 -0.769531 0.625 -1.15625 C 0.414062 -1.550781 0.3125 -1.96875 0.3125 -2.40625 C 0.3125 -2.84375 0.40625 -3.253906 0.59375 -3.640625 C 0.789062 -4.023438 1.0625 -4.335938 1.40625 -4.578125 C 1.757812 -4.816406 2.148438 -4.9375 2.578125 -4.9375 C 2.921875 -4.9375 3.210938 -4.878906 3.453125 -4.765625 C 3.703125 -4.648438 3.90625 -4.488281 4.0625 -4.28125 C 4.226562 -4.082031 4.351562 -3.847656 4.4375 -3.578125 C 4.519531 -3.304688 4.5625 -3.007812 4.5625 -2.6875 C 4.5625 -2.59375 4.523438 -2.546875 4.453125 -2.546875 L 1.265625 -2.546875 L 1.265625 -2.421875 C 1.265625 -1.816406 1.382812 -1.296875 1.625 -0.859375 C 1.875 -0.421875 2.28125 -0.203125 2.84375 -0.203125 C 3.0625 -0.203125 3.265625 -0.25 3.453125 -0.34375 C 3.648438 -0.445312 3.816406 -0.585938 3.953125 -0.765625 C 4.097656 -0.941406 4.195312 -1.132812 4.25 -1.34375 C 4.257812 -1.363281 4.269531 -1.382812 4.28125 -1.40625 C 4.300781 -1.425781 4.328125 -1.4375 4.359375 -1.4375 L 4.453125 -1.4375 C 4.523438 -1.4375 4.5625 -1.390625 4.5625 -1.296875 C 4.457031 -0.878906 4.234375 -0.535156 3.890625 -0.265625 C 3.546875 -0.00390625 3.160156 0.125 2.734375 0.125 Z M 1.28125 -2.8125 L 3.78125 -2.8125 C 3.78125 -3.09375 3.742188 -3.375 3.671875 -3.65625 C 3.597656 -3.9375 3.46875 -4.171875 3.28125 -4.359375 C 3.101562 -4.546875 2.867188 -4.640625 2.578125 -4.640625 C 2.160156 -4.640625 1.835938 -4.441406 1.609375 -4.046875 C 1.390625 -3.660156 1.28125 -3.25 1.28125 -2.8125 Z M 1.28125 -2.8125 "/>
</symbol>
<symbol overflow="visible" id="glyph1-3">
<path style="stroke:none;" d="M 0.4375 -1.078125 C 0.4375 -1.515625 0.609375 -1.867188 0.953125 -2.140625 C 1.296875 -2.421875 1.707031 -2.613281 2.1875 -2.71875 C 2.675781 -2.832031 3.132812 -2.890625 3.5625 -2.890625 L 3.5625 -3.34375 C 3.5625 -3.550781 3.515625 -3.753906 3.421875 -3.953125 C 3.328125 -4.160156 3.191406 -4.328125 3.015625 -4.453125 C 2.847656 -4.578125 2.65625 -4.640625 2.4375 -4.640625 C 1.957031 -4.640625 1.585938 -4.53125 1.328125 -4.3125 C 1.472656 -4.3125 1.585938 -4.257812 1.671875 -4.15625 C 1.765625 -4.050781 1.8125 -3.925781 1.8125 -3.78125 C 1.8125 -3.632812 1.757812 -3.507812 1.65625 -3.40625 C 1.550781 -3.300781 1.429688 -3.25 1.296875 -3.25 C 1.140625 -3.25 1.007812 -3.300781 0.90625 -3.40625 C 0.800781 -3.507812 0.75 -3.632812 0.75 -3.78125 C 0.75 -4.164062 0.925781 -4.453125 1.28125 -4.640625 C 1.632812 -4.835938 2.019531 -4.9375 2.4375 -4.9375 C 2.738281 -4.9375 3.039062 -4.867188 3.34375 -4.734375 C 3.644531 -4.609375 3.890625 -4.425781 4.078125 -4.1875 C 4.265625 -3.957031 4.359375 -3.6875 4.359375 -3.375 L 4.359375 -0.890625 C 4.359375 -0.742188 4.390625 -0.609375 4.453125 -0.484375 C 4.515625 -0.367188 4.613281 -0.3125 4.75 -0.3125 C 4.863281 -0.3125 4.953125 -0.375 5.015625 -0.5 C 5.078125 -0.625 5.109375 -0.753906 5.109375 -0.890625 L 5.109375 -1.59375 L 5.421875 -1.59375 L 5.421875 -0.890625 C 5.421875 -0.722656 5.378906 -0.566406 5.296875 -0.421875 C 5.210938 -0.273438 5.097656 -0.15625 4.953125 -0.0625 C 4.804688 0.0195312 4.648438 0.0625 4.484375 0.0625 C 4.265625 0.0625 4.078125 -0.0195312 3.921875 -0.1875 C 3.765625 -0.351562 3.675781 -0.550781 3.65625 -0.78125 C 3.519531 -0.5 3.320312 -0.273438 3.0625 -0.109375 C 2.800781 0.046875 2.519531 0.125 2.21875 0.125 C 1.9375 0.125 1.660156 0.0820312 1.390625 0 C 1.117188 -0.0820312 0.890625 -0.210938 0.703125 -0.390625 C 0.523438 -0.566406 0.4375 -0.796875 0.4375 -1.078125 Z M 1.328125 -1.078125 C 1.328125 -0.816406 1.421875 -0.597656 1.609375 -0.421875 C 1.804688 -0.253906 2.03125 -0.171875 2.28125 -0.171875 C 2.519531 -0.171875 2.734375 -0.226562 2.921875 -0.34375 C 3.117188 -0.457031 3.273438 -0.617188 3.390625 -0.828125 C 3.503906 -1.035156 3.5625 -1.25 3.5625 -1.46875 L 3.5625 -2.609375 C 3.226562 -2.609375 2.882812 -2.550781 2.53125 -2.4375 C 2.1875 -2.332031 1.898438 -2.164062 1.671875 -1.9375 C 1.441406 -1.707031 1.328125 -1.421875 1.328125 -1.078125 Z M 1.328125 -1.078125 "/>
</symbol>
<symbol overflow="visible" id="glyph1-4">
<path style="stroke:none;" d="M 0.34375 0 L 0.34375 -0.390625 C 0.59375 -0.390625 0.796875 -0.40625 0.953125 -0.4375 C 1.117188 -0.476562 1.203125 -0.578125 1.203125 -0.734375 L 1.203125 -6.515625 C 1.203125 -6.710938 1.171875 -6.851562 1.109375 -6.9375 C 1.046875 -7.019531 0.957031 -7.070312 0.84375 -7.09375 C 0.738281 -7.113281 0.570312 -7.125 0.34375 -7.125 L 0.34375 -7.515625 L 1.96875 -7.625 L 1.96875 -0.734375 C 1.96875 -0.578125 2.046875 -0.476562 2.203125 -0.4375 C 2.367188 -0.40625 2.578125 -0.390625 2.828125 -0.390625 L 2.828125 0 Z M 0.34375 0 "/>
</symbol>
<symbol overflow="visible" id="glyph1-5">
<path style="stroke:none;" d="M 0.359375 0 L 0.359375 -0.390625 C 1.117188 -0.390625 1.5 -0.503906 1.5 -0.734375 L 1.5 -6.78125 C 1.5 -7.007812 1.117188 -7.125 0.359375 -7.125 L 0.359375 -7.515625 L 4.28125 -7.515625 C 4.675781 -7.515625 5.070312 -7.429688 5.46875 -7.265625 C 5.875 -7.097656 6.207031 -6.859375 6.46875 -6.546875 C 6.726562 -6.234375 6.859375 -5.867188 6.859375 -5.453125 C 6.859375 -5.035156 6.726562 -4.671875 6.46875 -4.359375 C 6.207031 -4.054688 5.878906 -3.828125 5.484375 -3.671875 C 5.085938 -3.515625 4.6875 -3.4375 4.28125 -3.4375 L 2.515625 -3.4375 L 2.515625 -0.734375 C 2.515625 -0.503906 2.894531 -0.390625 3.65625 -0.390625 L 3.65625 0 Z M 2.484375 -3.765625 L 3.984375 -3.765625 C 4.390625 -3.765625 4.71875 -3.820312 4.96875 -3.9375 C 5.21875 -4.050781 5.398438 -4.226562 5.515625 -4.46875 C 5.628906 -4.71875 5.6875 -5.046875 5.6875 -5.453125 C 5.6875 -6.046875 5.554688 -6.472656 5.296875 -6.734375 C 5.035156 -6.992188 4.597656 -7.125 3.984375 -7.125 L 3.046875 -7.125 C 2.910156 -7.125 2.804688 -7.117188 2.734375 -7.109375 C 2.660156 -7.097656 2.597656 -7.066406 2.546875 -7.015625 C 2.503906 -6.960938 2.484375 -6.882812 2.484375 -6.78125 Z M 2.484375 -3.765625 "/>
</symbol>
<symbol overflow="visible" id="glyph1-6">
<path style="stroke:none;" d="M 0.28125 0 L 0.28125 -0.390625 C 0.53125 -0.390625 0.734375 -0.40625 0.890625 -0.4375 C 1.054688 -0.476562 1.140625 -0.578125 1.140625 -0.734375 L 1.140625 -3.734375 C 1.140625 -3.929688 1.109375 -4.070312 1.046875 -4.15625 C 0.992188 -4.25 0.910156 -4.304688 0.796875 -4.328125 C 0.691406 -4.347656 0.519531 -4.359375 0.28125 -4.359375 L 0.28125 -4.75 L 1.859375 -4.859375 L 1.859375 -3.78125 C 1.972656 -4.101562 2.140625 -4.363281 2.359375 -4.5625 C 2.578125 -4.757812 2.84375 -4.859375 3.15625 -4.859375 C 3.375 -4.859375 3.566406 -4.789062 3.734375 -4.65625 C 3.910156 -4.53125 4 -4.363281 4 -4.15625 C 4 -4.019531 3.953125 -3.898438 3.859375 -3.796875 C 3.765625 -3.703125 3.644531 -3.65625 3.5 -3.65625 C 3.363281 -3.65625 3.25 -3.703125 3.15625 -3.796875 C 3.0625 -3.898438 3.015625 -4.019531 3.015625 -4.15625 C 3.015625 -4.351562 3.082031 -4.492188 3.21875 -4.578125 L 3.15625 -4.578125 C 2.863281 -4.578125 2.625 -4.46875 2.4375 -4.25 C 2.25 -4.039062 2.113281 -3.773438 2.03125 -3.453125 C 1.945312 -3.128906 1.90625 -2.828125 1.90625 -2.546875 L 1.90625 -0.734375 C 1.90625 -0.503906 2.265625 -0.390625 2.984375 -0.390625 L 2.984375 0 Z M 0.28125 0 "/>
</symbol>
<symbol overflow="visible" id="glyph1-7">
<path style="stroke:none;" d="M 1.125 -1.328125 L 1.125 -4.359375 L 0.203125 -4.359375 L 0.203125 -4.640625 C 0.679688 -4.640625 1.035156 -4.863281 1.265625 -5.3125 C 1.492188 -5.757812 1.609375 -6.242188 1.609375 -6.765625 L 1.921875 -6.765625 L 1.921875 -4.75 L 3.46875 -4.75 L 3.46875 -4.359375 L 1.921875 -4.359375 L 1.921875 -1.34375 C 1.921875 -1.039062 1.972656 -0.773438 2.078125 -0.546875 C 2.179688 -0.316406 2.363281 -0.203125 2.625 -0.203125 C 2.875 -0.203125 3.050781 -0.320312 3.15625 -0.5625 C 3.269531 -0.800781 3.328125 -1.0625 3.328125 -1.34375 L 3.328125 -2 L 3.65625 -2 L 3.65625 -1.328125 C 3.65625 -1.097656 3.613281 -0.867188 3.53125 -0.640625 C 3.445312 -0.421875 3.320312 -0.238281 3.15625 -0.09375 C 2.988281 0.0507812 2.785156 0.125 2.546875 0.125 C 2.109375 0.125 1.757812 -0.00390625 1.5 -0.265625 C 1.25 -0.535156 1.125 -0.890625 1.125 -1.328125 Z M 1.125 -1.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-0">
<path style="stroke:none;" d="M 0 -0.359375 L -7.328125 -0.359375 L -7.328125 -3.28125 L 0 -3.28125 Z M -0.359375 -0.734375 L -0.359375 -2.921875 L -6.96875 -2.921875 L -6.96875 -0.734375 Z M -0.359375 -0.734375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-1">
<path style="stroke:none;" d="M 0 -0.28125 L -0.390625 -0.28125 C -0.390625 -1.070312 -0.503906 -1.46875 -0.734375 -1.46875 L -6.78125 -1.46875 C -7.007812 -1.46875 -7.125 -1.070312 -7.125 -0.28125 L -7.515625 -0.28125 L -7.515625 -3.6875 L -7.125 -3.6875 C -7.125 -2.894531 -7.007812 -2.5 -6.78125 -2.5 L -0.734375 -2.5 C -0.503906 -2.5 -0.390625 -2.894531 -0.390625 -3.6875 L 0 -3.6875 Z M 0 -0.28125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-2">
<path style="stroke:none;" d="M 0 -0.328125 L -0.390625 -0.328125 C -0.390625 -0.578125 -0.40625 -0.78125 -0.4375 -0.9375 C -0.476562 -1.101562 -0.578125 -1.1875 -0.734375 -1.1875 L -3.734375 -1.1875 C -3.929688 -1.1875 -4.070312 -1.15625 -4.15625 -1.09375 C -4.25 -1.039062 -4.304688 -0.957031 -4.328125 -0.84375 C -4.347656 -0.726562 -4.359375 -0.554688 -4.359375 -0.328125 L -4.75 -0.328125 L -4.859375 -1.921875 L -3.78125 -1.921875 C -4.101562 -2.066406 -4.363281 -2.285156 -4.5625 -2.578125 C -4.757812 -2.867188 -4.859375 -3.179688 -4.859375 -3.515625 C -4.859375 -4.359375 -4.515625 -4.851562 -3.828125 -5 C -4.140625 -5.144531 -4.390625 -5.359375 -4.578125 -5.640625 C -4.765625 -5.929688 -4.859375 -6.242188 -4.859375 -6.578125 C -4.859375 -6.910156 -4.800781 -7.191406 -4.6875 -7.421875 C -4.582031 -7.648438 -4.421875 -7.820312 -4.203125 -7.9375 C -3.984375 -8.050781 -3.707031 -8.109375 -3.375 -8.109375 L -0.734375 -8.109375 C -0.578125 -8.109375 -0.476562 -8.1875 -0.4375 -8.34375 C -0.40625 -8.507812 -0.390625 -8.71875 -0.390625 -8.96875 L 0 -8.96875 L 0 -6.453125 L -0.390625 -6.453125 C -0.390625 -6.703125 -0.40625 -6.90625 -0.4375 -7.0625 C -0.476562 -7.226562 -0.578125 -7.3125 -0.734375 -7.3125 L -3.34375 -7.3125 C -3.71875 -7.3125 -4.015625 -7.257812 -4.234375 -7.15625 C -4.460938 -7.050781 -4.578125 -6.835938 -4.578125 -6.515625 C -4.578125 -6.085938 -4.40625 -5.734375 -4.0625 -5.453125 C -3.726562 -5.179688 -3.34375 -5.046875 -2.90625 -5.046875 L -0.734375 -5.046875 C -0.578125 -5.046875 -0.476562 -5.125 -0.4375 -5.28125 C -0.40625 -5.445312 -0.390625 -5.65625 -0.390625 -5.90625 L 0 -5.90625 L 0 -3.390625 L -0.390625 -3.390625 C -0.390625 -3.640625 -0.40625 -3.84375 -0.4375 -4 C -0.476562 -4.164062 -0.578125 -4.25 -0.734375 -4.25 L -3.34375 -4.25 C -3.707031 -4.25 -4.003906 -4.195312 -4.234375 -4.09375 C -4.460938 -3.988281 -4.578125 -3.773438 -4.578125 -3.453125 C -4.578125 -3.023438 -4.40625 -2.675781 -4.0625 -2.40625 C -3.726562 -2.132812 -3.34375 -2 -2.90625 -2 L -0.734375 -2 C -0.578125 -2 -0.476562 -2.078125 -0.4375 -2.234375 C -0.40625 -2.390625 -0.390625 -2.59375 -0.390625 -2.84375 L 0 -2.84375 Z M 0 -0.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-3">
<path style="stroke:none;" d="M -1.078125 -0.4375 C -1.515625 -0.4375 -1.867188 -0.609375 -2.140625 -0.953125 C -2.421875 -1.296875 -2.613281 -1.707031 -2.71875 -2.1875 C -2.832031 -2.675781 -2.890625 -3.132812 -2.890625 -3.5625 L -3.34375 -3.5625 C -3.550781 -3.5625 -3.753906 -3.515625 -3.953125 -3.421875 C -4.160156 -3.328125 -4.328125 -3.191406 -4.453125 -3.015625 C -4.578125 -2.847656 -4.640625 -2.65625 -4.640625 -2.4375 C -4.640625 -1.957031 -4.53125 -1.585938 -4.3125 -1.328125 C -4.3125 -1.472656 -4.257812 -1.585938 -4.15625 -1.671875 C -4.050781 -1.765625 -3.925781 -1.8125 -3.78125 -1.8125 C -3.632812 -1.8125 -3.507812 -1.757812 -3.40625 -1.65625 C -3.300781 -1.550781 -3.25 -1.429688 -3.25 -1.296875 C -3.25 -1.140625 -3.300781 -1.007812 -3.40625 -0.90625 C -3.507812 -0.800781 -3.632812 -0.75 -3.78125 -0.75 C -4.164062 -0.75 -4.453125 -0.925781 -4.640625 -1.28125 C -4.835938 -1.632812 -4.9375 -2.019531 -4.9375 -2.4375 C -4.9375 -2.738281 -4.867188 -3.039062 -4.734375 -3.34375 C -4.609375 -3.644531 -4.425781 -3.890625 -4.1875 -4.078125 C -3.957031 -4.265625 -3.6875 -4.359375 -3.375 -4.359375 L -0.890625 -4.359375 C -0.742188 -4.359375 -0.609375 -4.390625 -0.484375 -4.453125 C -0.367188 -4.515625 -0.3125 -4.613281 -0.3125 -4.75 C -0.3125 -4.863281 -0.375 -4.953125 -0.5 -5.015625 C -0.625 -5.078125 -0.753906 -5.109375 -0.890625 -5.109375 L -1.59375 -5.109375 L -1.59375 -5.421875 L -0.890625 -5.421875 C -0.722656 -5.421875 -0.566406 -5.378906 -0.421875 -5.296875 C -0.273438 -5.210938 -0.15625 -5.097656 -0.0625 -4.953125 C 0.0195312 -4.804688 0.0625 -4.648438 0.0625 -4.484375 C 0.0625 -4.265625 -0.0195312 -4.078125 -0.1875 -3.921875 C -0.351562 -3.765625 -0.550781 -3.675781 -0.78125 -3.65625 C -0.5 -3.519531 -0.273438 -3.320312 -0.109375 -3.0625 C 0.046875 -2.800781 0.125 -2.519531 0.125 -2.21875 C 0.125 -1.9375 0.0820312 -1.660156 0 -1.390625 C -0.0820312 -1.117188 -0.210938 -0.890625 -0.390625 -0.703125 C -0.566406 -0.523438 -0.796875 -0.4375 -1.078125 -0.4375 Z M -1.078125 -1.328125 C -0.816406 -1.328125 -0.597656 -1.421875 -0.421875 -1.609375 C -0.253906 -1.804688 -0.171875 -2.03125 -0.171875 -2.28125 C -0.171875 -2.519531 -0.226562 -2.734375 -0.34375 -2.921875 C -0.457031 -3.117188 -0.617188 -3.273438 -0.828125 -3.390625 C -1.035156 -3.503906 -1.25 -3.5625 -1.46875 -3.5625 L -2.609375 -3.5625 C -2.609375 -3.226562 -2.550781 -2.882812 -2.4375 -2.53125 C -2.332031 -2.1875 -2.164062 -1.898438 -1.9375 -1.671875 C -1.707031 -1.441406 -1.421875 -1.328125 -1.078125 -1.328125 Z M -1.078125 -1.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-4">
<path style="stroke:none;" d="M 0.859375 -0.3125 C 0.597656 -0.3125 0.367188 -0.40625 0.171875 -0.59375 C -0.0234375 -0.78125 -0.160156 -1.003906 -0.234375 -1.265625 C -0.347656 -1.117188 -0.488281 -1.003906 -0.65625 -0.921875 C -0.820312 -0.847656 -1.003906 -0.8125 -1.203125 -0.8125 C -1.546875 -0.8125 -1.847656 -0.921875 -2.109375 -1.140625 C -2.441406 -0.804688 -2.820312 -0.640625 -3.25 -0.640625 C -3.476562 -0.640625 -3.691406 -0.6875 -3.890625 -0.78125 C -4.085938 -0.882812 -4.257812 -1.023438 -4.40625 -1.203125 C -4.550781 -1.378906 -4.660156 -1.570312 -4.734375 -1.78125 C -4.816406 -2 -4.859375 -2.21875 -4.859375 -2.4375 C -4.859375 -2.875 -4.734375 -3.269531 -4.484375 -3.625 C -4.640625 -3.769531 -4.757812 -3.945312 -4.84375 -4.15625 C -4.9375 -4.363281 -4.984375 -4.578125 -4.984375 -4.796875 C -4.984375 -4.953125 -4.925781 -5.078125 -4.8125 -5.171875 C -4.695312 -5.273438 -4.5625 -5.328125 -4.40625 -5.328125 C -4.320312 -5.328125 -4.242188 -5.289062 -4.171875 -5.21875 C -4.109375 -5.15625 -4.078125 -5.082031 -4.078125 -5 C -4.078125 -4.90625 -4.109375 -4.820312 -4.171875 -4.75 C -4.242188 -4.6875 -4.320312 -4.65625 -4.40625 -4.65625 C -4.539062 -4.65625 -4.632812 -4.695312 -4.6875 -4.78125 C -4.6875 -4.40625 -4.554688 -4.082031 -4.296875 -3.8125 C -4.171875 -3.9375 -4.007812 -4.039062 -3.8125 -4.125 C -3.625 -4.207031 -3.4375 -4.25 -3.25 -4.25 C -2.9375 -4.25 -2.65625 -4.160156 -2.40625 -3.984375 C -2.15625 -3.816406 -1.957031 -3.59375 -1.8125 -3.3125 C -1.675781 -3.03125 -1.609375 -2.738281 -1.609375 -2.4375 C -1.609375 -2.039062 -1.71875 -1.675781 -1.9375 -1.34375 C -1.800781 -1.238281 -1.644531 -1.1875 -1.46875 -1.1875 C -1.269531 -1.1875 -1.097656 -1.25 -0.953125 -1.375 C -0.804688 -1.5 -0.734375 -1.660156 -0.734375 -1.859375 L -0.734375 -2.765625 C -0.734375 -3.203125 -0.691406 -3.59375 -0.609375 -3.9375 C -0.535156 -4.289062 -0.378906 -4.585938 -0.140625 -4.828125 C 0.0859375 -5.066406 0.421875 -5.1875 0.859375 -5.1875 C 1.179688 -5.1875 1.445312 -5.046875 1.65625 -4.765625 C 1.875 -4.492188 2.03125 -4.171875 2.125 -3.796875 C 2.21875 -3.421875 2.265625 -3.070312 2.265625 -2.75 C 2.265625 -2.425781 2.21875 -2.070312 2.125 -1.6875 C 2.03125 -1.3125 1.875 -0.988281 1.65625 -0.71875 C 1.445312 -0.445312 1.179688 -0.3125 0.859375 -0.3125 Z M 0.859375 -0.921875 C 1.109375 -0.921875 1.316406 -1.019531 1.484375 -1.21875 C 1.648438 -1.425781 1.769531 -1.671875 1.84375 -1.953125 C 1.925781 -2.234375 1.96875 -2.5 1.96875 -2.75 C 1.96875 -3 1.925781 -3.265625 1.84375 -3.546875 C 1.769531 -3.828125 1.648438 -4.066406 1.484375 -4.265625 C 1.316406 -4.460938 1.109375 -4.5625 0.859375 -4.5625 C 0.472656 -4.5625 0.222656 -4.382812 0.109375 -4.03125 C 0.00390625 -3.6875 -0.046875 -3.265625 -0.046875 -2.765625 L -0.046875 -1.859375 C -0.046875 -1.691406 -0.0078125 -1.535156 0.0625 -1.390625 C 0.144531 -1.253906 0.257812 -1.140625 0.40625 -1.046875 C 0.550781 -0.960938 0.703125 -0.921875 0.859375 -0.921875 Z M -1.90625 -2.4375 C -1.90625 -3.0625 -2.351562 -3.375 -3.25 -3.375 C -3.625 -3.375 -3.9375 -3.304688 -4.1875 -3.171875 C -4.4375 -3.046875 -4.5625 -2.800781 -4.5625 -2.4375 C -4.5625 -2.082031 -4.4375 -1.835938 -4.1875 -1.703125 C -3.9375 -1.578125 -3.625 -1.515625 -3.25 -1.515625 C -3 -1.515625 -2.773438 -1.535156 -2.578125 -1.578125 C -2.378906 -1.628906 -2.21875 -1.722656 -2.09375 -1.859375 C -1.96875 -1.992188 -1.90625 -2.1875 -1.90625 -2.4375 Z M -1.90625 -2.4375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-5">
<path style="stroke:none;" d="M 0 -0.34375 L -0.390625 -0.34375 C -0.390625 -0.59375 -0.40625 -0.796875 -0.4375 -0.953125 C -0.476562 -1.117188 -0.578125 -1.203125 -0.734375 -1.203125 L -3.734375 -1.203125 C -4.015625 -1.203125 -4.1875 -1.144531 -4.25 -1.03125 C -4.320312 -0.925781 -4.359375 -0.710938 -4.359375 -0.390625 L -4.75 -0.390625 L -4.859375 -1.96875 L -0.734375 -1.96875 C -0.578125 -1.96875 -0.476562 -2.035156 -0.4375 -2.171875 C -0.40625 -2.316406 -0.390625 -2.503906 -0.390625 -2.734375 L 0 -2.734375 Z M -6.75 -0.8125 C -6.914062 -0.8125 -7.054688 -0.867188 -7.171875 -0.984375 C -7.296875 -1.109375 -7.359375 -1.25 -7.359375 -1.40625 C -7.359375 -1.507812 -7.332031 -1.609375 -7.28125 -1.703125 C -7.226562 -1.804688 -7.148438 -1.882812 -7.046875 -1.9375 C -6.953125 -1.988281 -6.851562 -2.015625 -6.75 -2.015625 C -6.59375 -2.015625 -6.453125 -1.953125 -6.328125 -1.828125 C -6.210938 -1.710938 -6.15625 -1.570312 -6.15625 -1.40625 C -6.15625 -1.25 -6.210938 -1.109375 -6.328125 -0.984375 C -6.453125 -0.867188 -6.59375 -0.8125 -6.75 -0.8125 Z M -6.75 -0.8125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-6">
<path style="stroke:none;" d="M 0 -0.328125 L -0.390625 -0.328125 C -0.390625 -0.578125 -0.40625 -0.78125 -0.4375 -0.9375 C -0.476562 -1.101562 -0.578125 -1.1875 -0.734375 -1.1875 L -3.734375 -1.1875 C -3.929688 -1.1875 -4.070312 -1.15625 -4.15625 -1.09375 C -4.25 -1.039062 -4.304688 -0.957031 -4.328125 -0.84375 C -4.347656 -0.726562 -4.359375 -0.554688 -4.359375 -0.328125 L -4.75 -0.328125 L -4.859375 -1.921875 L -3.78125 -1.921875 C -4.101562 -2.066406 -4.363281 -2.285156 -4.5625 -2.578125 C -4.757812 -2.867188 -4.859375 -3.179688 -4.859375 -3.515625 C -4.859375 -4.023438 -4.734375 -4.40625 -4.484375 -4.65625 C -4.242188 -4.914062 -3.875 -5.046875 -3.375 -5.046875 L -0.734375 -5.046875 C -0.578125 -5.046875 -0.476562 -5.125 -0.4375 -5.28125 C -0.40625 -5.445312 -0.390625 -5.65625 -0.390625 -5.90625 L 0 -5.90625 L 0 -3.390625 L -0.390625 -3.390625 C -0.390625 -3.640625 -0.40625 -3.84375 -0.4375 -4 C -0.476562 -4.164062 -0.578125 -4.25 -0.734375 -4.25 L -3.34375 -4.25 C -3.707031 -4.25 -4.003906 -4.195312 -4.234375 -4.09375 C -4.460938 -3.988281 -4.578125 -3.773438 -4.578125 -3.453125 C -4.578125 -3.023438 -4.40625 -2.675781 -4.0625 -2.40625 C -3.726562 -2.132812 -3.34375 -2 -2.90625 -2 L -0.734375 -2 C -0.578125 -2 -0.476562 -2.078125 -0.4375 -2.234375 C -0.40625 -2.390625 -0.390625 -2.59375 -0.390625 -2.84375 L 0 -2.84375 Z M 0 -0.328125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-7">
<path style="stroke:none;" d="M 0 -0.28125 L -0.390625 -0.28125 C -0.390625 -0.53125 -0.40625 -0.734375 -0.4375 -0.890625 C -0.476562 -1.054688 -0.578125 -1.140625 -0.734375 -1.140625 L -3.734375 -1.140625 C -3.929688 -1.140625 -4.070312 -1.109375 -4.15625 -1.046875 C -4.25 -0.992188 -4.304688 -0.910156 -4.328125 -0.796875 C -4.347656 -0.691406 -4.359375 -0.519531 -4.359375 -0.28125 L -4.75 -0.28125 L -4.859375 -1.859375 L -3.78125 -1.859375 C -4.101562 -1.972656 -4.363281 -2.140625 -4.5625 -2.359375 C -4.757812 -2.578125 -4.859375 -2.84375 -4.859375 -3.15625 C -4.859375 -3.375 -4.789062 -3.566406 -4.65625 -3.734375 C -4.53125 -3.910156 -4.363281 -4 -4.15625 -4 C -4.019531 -4 -3.898438 -3.953125 -3.796875 -3.859375 C -3.703125 -3.765625 -3.65625 -3.644531 -3.65625 -3.5 C -3.65625 -3.363281 -3.703125 -3.25 -3.796875 -3.15625 C -3.898438 -3.0625 -4.019531 -3.015625 -4.15625 -3.015625 C -4.351562 -3.015625 -4.492188 -3.082031 -4.578125 -3.21875 L -4.578125 -3.15625 C -4.578125 -2.863281 -4.46875 -2.625 -4.25 -2.4375 C -4.039062 -2.25 -3.773438 -2.113281 -3.453125 -2.03125 C -3.128906 -1.945312 -2.828125 -1.90625 -2.546875 -1.90625 L -0.734375 -1.90625 C -0.503906 -1.90625 -0.390625 -2.265625 -0.390625 -2.984375 L 0 -2.984375 Z M 0 -0.28125 "/>
</symbol>
<symbol overflow="visible" id="glyph2-8">
<path style="stroke:none;" d="M 1.8125 -0.75 C 1.914062 -0.894531 1.96875 -1.050781 1.96875 -1.21875 C 1.96875 -1.675781 1.617188 -2.054688 0.921875 -2.359375 L 0 -2.734375 L -4.046875 -1.078125 C -4.179688 -1.015625 -4.265625 -0.910156 -4.296875 -0.765625 C -4.335938 -0.628906 -4.359375 -0.441406 -4.359375 -0.203125 L -4.75 -0.203125 L -4.75 -2.515625 L -4.359375 -2.515625 C -4.359375 -2.109375 -4.269531 -1.90625 -4.09375 -1.90625 C -4.0625 -1.90625 -4.039062 -1.910156 -4.03125 -1.921875 L -1.015625 -3.140625 L -3.734375 -4.25 C -3.785156 -4.269531 -3.847656 -4.28125 -3.921875 -4.28125 C -4.003906 -4.28125 -4.078125 -4.253906 -4.140625 -4.203125 C -4.210938 -4.160156 -4.265625 -4.097656 -4.296875 -4.015625 C -4.335938 -3.941406 -4.359375 -3.859375 -4.359375 -3.765625 L -4.75 -3.765625 L -4.75 -5.59375 L -4.359375 -5.59375 C -4.359375 -5.363281 -4.304688 -5.160156 -4.203125 -4.984375 C -4.097656 -4.816406 -3.941406 -4.6875 -3.734375 -4.59375 L 0.921875 -2.703125 C 1.160156 -2.597656 1.378906 -2.476562 1.578125 -2.34375 C 1.773438 -2.207031 1.9375 -2.039062 2.0625 -1.84375 C 2.1875 -1.65625 2.25 -1.445312 2.25 -1.21875 C 2.25 -0.945312 2.160156 -0.707031 1.984375 -0.5 C 1.804688 -0.300781 1.585938 -0.203125 1.328125 -0.203125 C 1.191406 -0.203125 1.078125 -0.25 0.984375 -0.34375 C 0.890625 -0.4375 0.84375 -0.550781 0.84375 -0.6875 C 0.84375 -0.78125 0.863281 -0.863281 0.90625 -0.9375 C 0.945312 -1.007812 1.003906 -1.066406 1.078125 -1.109375 C 1.148438 -1.148438 1.234375 -1.171875 1.328125 -1.171875 C 1.453125 -1.171875 1.554688 -1.128906 1.640625 -1.046875 C 1.734375 -0.972656 1.789062 -0.875 1.8125 -0.75 Z M 1.8125 -0.75 "/>
</symbol>
<symbol overflow="visible" id="glyph2-9">
<path style="stroke:none;" d="M 0 -0.359375 L -0.390625 -0.359375 C -0.390625 -1.117188 -0.503906 -1.5 -0.734375 -1.5 L -6.78125 -1.5 C -7.007812 -1.5 -7.125 -1.117188 -7.125 -0.359375 L -7.515625 -0.359375 L -7.515625 -4.28125 C -7.515625 -4.675781 -7.429688 -5.070312 -7.265625 -5.46875 C -7.097656 -5.875 -6.859375 -6.207031 -6.546875 -6.46875 C -6.234375 -6.726562 -5.867188 -6.859375 -5.453125 -6.859375 C -5.035156 -6.859375 -4.671875 -6.726562 -4.359375 -6.46875 C -4.054688 -6.207031 -3.828125 -5.878906 -3.671875 -5.484375 C -3.515625 -5.085938 -3.4375 -4.6875 -3.4375 -4.28125 L -3.4375 -2.515625 L -0.734375 -2.515625 C -0.503906 -2.515625 -0.390625 -2.894531 -0.390625 -3.65625 L 0 -3.65625 Z M -3.765625 -2.484375 L -3.765625 -3.984375 C -3.765625 -4.390625 -3.820312 -4.71875 -3.9375 -4.96875 C -4.050781 -5.21875 -4.226562 -5.398438 -4.46875 -5.515625 C -4.71875 -5.628906 -5.046875 -5.6875 -5.453125 -5.6875 C -6.046875 -5.6875 -6.472656 -5.554688 -6.734375 -5.296875 C -6.992188 -5.035156 -7.125 -4.597656 -7.125 -3.984375 L -7.125 -3.046875 C -7.125 -2.910156 -7.117188 -2.804688 -7.109375 -2.734375 C -7.097656 -2.660156 -7.066406 -2.597656 -7.015625 -2.546875 C -6.960938 -2.503906 -6.882812 -2.484375 -6.78125 -2.484375 Z M -3.765625 -2.484375 "/>
</symbol>
<symbol overflow="visible" id="glyph2-10">
<path style="stroke:none;" d="M -1.328125 -1.125 L -4.359375 -1.125 L -4.359375 -0.203125 L -4.640625 -0.203125 C -4.640625 -0.679688 -4.863281 -1.035156 -5.3125 -1.265625 C -5.757812 -1.492188 -6.242188 -1.609375 -6.765625 -1.609375 L -6.765625 -1.921875 L -4.75 -1.921875 L -4.75 -3.46875 L -4.359375 -3.46875 L -4.359375 -1.921875 L -1.34375 -1.921875 C -1.039062 -1.921875 -0.773438 -1.972656 -0.546875 -2.078125 C -0.316406 -2.179688 -0.203125 -2.363281 -0.203125 -2.625 C -0.203125 -2.875 -0.320312 -3.050781 -0.5625 -3.15625 C -0.800781 -3.269531 -1.0625 -3.328125 -1.34375 -3.328125 L -2 -3.328125 L -2 -3.65625 L -1.328125 -3.65625 C -1.097656 -3.65625 -0.867188 -3.613281 -0.640625 -3.53125 C -0.421875 -3.445312 -0.238281 -3.320312 -0.09375 -3.15625 C 0.0507812 -2.988281 0.125 -2.785156 0.125 -2.546875 C 0.125 -2.109375 -0.00390625 -1.757812 -0.265625 -1.5 C -0.535156 -1.25 -0.890625 -1.125 -1.328125 -1.125 Z M -1.328125 -1.125 "/>
</symbol>
</g>
</defs>
<g id="surface1">
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 39.472656 143.207031 L 181.980469 143.207031 L 181.980469 0.699219 L 39.472656 0.699219 Z M 39.472656 143.207031 "/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 145.504022 419.000421 L 145.504022 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 272.830412 419.000421 L 272.830412 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 400.167272 419.000421 L 400.167272 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 419.000421 L 527.504133 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 419.000421 L 145.504022 419.000421 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 355.337229 L 145.504022 355.337229 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 291.663565 L 145.504022 291.663565 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 228.000373 L 145.504022 228.000373 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 164.33718 L 145.504022 164.33718 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(14.898682%,14.898682%,14.898682%);stroke-opacity:0.14902;stroke-miterlimit:10;" d="M 527.504133 100.663517 L 145.504022 100.663517 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 419.000421 L 527.504133 419.000421 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 37.000324 L 527.504133 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 419.000421 L 145.504022 415.178536 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 272.830412 419.000421 L 272.830412 415.178536 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 400.167272 419.000421 L 400.167272 415.178536 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 419.000421 L 527.504133 415.178536 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 37.000324 L 145.504022 40.82221 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 272.830412 37.000324 L 272.830412 40.82221 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 400.167272 37.000324 L 400.167272 40.82221 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 37.000324 L 527.504133 40.82221 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="31.415583" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="34.748912" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="39.748927" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-4" x="42.526713" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="78.918177" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="82.251506" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="87.251521" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="90.029307" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="131.976333" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="175.590026" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="180.590041" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="183.367828" y="155.606841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-1" x="87.487576" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-2" x="95.584801" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-3" x="100.473689" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-4" x="105.973706" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-5" x="112.695932" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-3" x="119.876497" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-6" x="125.376514" y="169.446841"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph1-7" x="129.684854" y="169.446841"/>
</g>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 419.000421 L 145.504022 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 419.000421 L 527.504133 37.000324 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 419.000421 L 149.315437 419.000421 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 355.337229 L 149.315437 355.337229 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 291.663565 L 149.315437 291.663565 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 228.000373 L 149.315437 228.000373 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 164.33718 L 149.315437 164.33718 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 145.504022 100.663517 L 149.315437 100.663517 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 419.000421 L 523.682247 419.000421 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 355.337229 L 523.682247 355.337229 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 291.663565 L 523.682247 291.663565 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 228.000373 L 523.682247 228.000373 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 164.33718 L 523.682247 164.33718 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:1.340278;stroke-linecap:square;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 527.504133 100.663517 L 523.682247 100.663517 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="14.359999" y="145.606838"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="17.693326" y="145.606838"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="22.693342" y="145.606838"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="25.471129" y="145.606838"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="30.471144" y="145.606838"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="19.360013" y="121.855545"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="22.693342" y="121.855545"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="27.693358" y="121.855545"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="30.471144" y="121.855545"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-1" x="14.359999" y="98.104242"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="17.693326" y="98.104242"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="22.693342" y="98.104242"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="25.471129" y="98.104242"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="30.471144" y="98.104242"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="30.471144" y="74.352949"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="17.693326" y="50.601651"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="22.693342" y="50.601651"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="25.471129" y="50.601651"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-6" x="30.471144" y="50.601651"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-2" x="22.693342" y="26.850356"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-3" x="27.693358" y="26.850356"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph0-5" x="30.471144" y="26.850356"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-1" x="7.399958" y="108.879391"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-2" x="7.399958" y="104.907164"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.399958" y="95.740471"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-4" x="7.399958" y="90.240453"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-5" x="7.399957" y="84.740436"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-6" x="7.399957" y="81.684871"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.399957" y="75.57374"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-7" x="7.399957" y="70.073723"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-8" x="7.399956" y="65.765384"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-9" x="7.399956" y="56.29314"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-3" x="7.399956" y="49.112574"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-7" x="7.399956" y="43.612556"/>
</g>
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
<use xlink:href="#glyph2-10" x="7.399955" y="39.30422"/>
</g>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,44.709778%,74.119568%);fill-opacity:1;" d="M 134.476562 22.199219 C 135.71875 22.199219 136.726562 23.207031 136.726562 24.449219 C 136.726562 25.691406 135.71875 26.699219 134.476562 26.699219 C 133.234375 26.699219 132.226562 25.691406 132.226562 24.449219 C 132.226562 23.207031 133.234375 22.199219 134.476562 22.199219 Z M 134.476562 20.699219 C 132.40625 20.699219 130.726562 22.378906 130.726562 24.449219 C 130.726562 26.519531 132.40625 28.199219 134.476562 28.199219 C 136.546875 28.199219 138.226562 26.519531 138.226562 24.449219 C 138.226562 22.378906 136.546875 20.699219 134.476562 20.699219 Z M 134.476562 20.699219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,44.709778%,74.119568%);fill-opacity:1;" d="M 134.476562 117.207031 C 135.71875 117.207031 136.726562 118.214844 136.726562 119.457031 C 136.726562 120.699219 135.71875 121.707031 134.476562 121.707031 C 133.234375 121.707031 132.226562 120.699219 132.226562 119.457031 C 132.226562 118.214844 133.234375 117.207031 134.476562 117.207031 Z M 134.476562 115.707031 C 132.40625 115.707031 130.726562 117.382812 130.726562 119.457031 C 130.726562 121.527344 132.40625 123.207031 134.476562 123.207031 C 136.546875 123.207031 138.226562 121.527344 138.226562 119.457031 C 138.226562 117.382812 136.546875 115.707031 134.476562 115.707031 Z M 134.476562 115.707031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,44.709778%,74.119568%);fill-opacity:1;" d="M 134.476562 22.199219 C 135.71875 22.199219 136.726562 23.207031 136.726562 24.449219 C 136.726562 25.691406 135.71875 26.699219 134.476562 26.699219 C 133.234375 26.699219 132.226562 25.691406 132.226562 24.449219 C 132.226562 23.207031 133.234375 22.199219 134.476562 22.199219 Z M 134.476562 20.699219 C 132.40625 20.699219 130.726562 22.378906 130.726562 24.449219 C 130.726562 26.519531 132.40625 28.199219 134.476562 28.199219 C 136.546875 28.199219 138.226562 26.519531 138.226562 24.449219 C 138.226562 22.378906 136.546875 20.699219 134.476562 20.699219 Z M 134.476562 20.699219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,44.709778%,74.119568%);fill-opacity:1;" d="M 134.476562 117.207031 C 135.71875 117.207031 136.726562 118.214844 136.726562 119.457031 C 136.726562 120.699219 135.71875 121.707031 134.476562 121.707031 C 133.234375 121.707031 132.226562 120.699219 132.226562 119.457031 C 132.226562 118.214844 133.234375 117.207031 134.476562 117.207031 Z M 134.476562 115.707031 C 132.40625 115.707031 130.726562 117.382812 130.726562 119.457031 C 130.726562 121.527344 132.40625 123.207031 134.476562 123.207031 C 136.546875 123.207031 138.226562 121.527344 138.226562 119.457031 C 138.226562 117.382812 136.546875 115.707031 134.476562 115.707031 Z M 134.476562 115.707031 "/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(0%,44.709778%,74.119568%);stroke-opacity:1;stroke-miterlimit:10;" d="M 290.055076 36.958441 L 290.348261 37.06315 L 294.787932 38.675672 L 299.018183 40.256781 L 303.039017 41.806477 L 306.881844 43.314289 L 310.546666 44.80116 L 314.033483 46.256618 L 317.373706 47.670192 L 320.556866 49.062824 L 323.603904 50.424044 L 326.504349 51.753851 L 329.289614 53.052245 L 331.949227 54.319226 L 334.493661 55.554794 L 336.922914 56.75895 L 339.25793 57.942164 L 341.488236 59.093965 L 343.634774 60.214354 L 345.676604 61.3138 L 347.645137 62.381834 L 349.529902 63.428926 L 351.341372 64.444605 L 353.069073 65.439343 L 354.73395 66.402667 L 356.336 67.34505 L 357.864755 68.266491 L 359.341155 69.156519 L 360.754729 70.025606 L 362.115948 70.87375 L 363.424813 71.700953 L 364.681324 72.507214 L 365.88548 73.292533 L 367.047752 74.05691 L 368.16814 74.789874 L 369.246645 75.512368 L 370.283266 76.22439 L 371.278004 76.905 L 372.241328 77.564668 L 373.162769 78.213865 L 374.052797 78.84212 L 374.921884 79.459904 L 375.749087 80.056747 L 376.544876 80.632647 L 377.309254 81.198077 L 378.052689 81.742565 L 378.764712 82.276582 L 379.455792 82.800128 L 380.125931 83.302732 L 380.764657 83.794865 L 381.382442 84.266057 L 381.989755 84.726777 L 382.565656 85.177027 L 383.120614 85.616805 L 383.654631 86.046113 L 384.178177 86.454479 L 384.680781 86.862845 L 385.162444 87.250269 L 385.633635 87.637693 L 386.094356 88.004175 L 386.523663 88.360186 L 386.952971 88.705727 L 387.361337 89.051267 L 387.759232 89.375865 L 388.136185 89.700464 L 388.513138 90.014592 L 388.86915 90.318248 L 389.21469 90.611434 L 389.549759 90.894149 L 389.874358 91.166393 L 390.188486 91.438637 L 390.492142 91.70041 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(0%,44.709778%,74.119568%);stroke-opacity:1;stroke-miterlimit:10;" d="M 400.292924 228.000373 L 400.71176 228.000373 L 400.743173 227.989902 L 401.141068 227.989902 L 401.193423 227.979431 L 401.39237 227.979431 L 401.465667 227.96896 L 401.62273 227.96896 L 401.716969 227.958489 L 401.800736 227.958489 L 401.905445 227.948018 L 402.010154 227.948018 L 402.114864 227.937547 L 402.230044 227.937547 L 402.481346 227.916606 L 402.617468 227.906135 L 402.764061 227.895664 L 402.921124 227.874722 L 403.078188 227.864251 L 403.256194 227.843309 L 403.4342 227.832838 L 403.832095 227.790954 L 404.051984 227.759542 L 404.282344 227.728129 L 404.523175 227.696716 L 404.784948 227.665303 L 405.046721 227.62342 L 405.339907 227.571065 L 405.643564 227.518711 L 405.957691 227.466356 L 406.292761 227.40353 L 406.648772 227.330234 L 407.025725 227.246467 L 407.42362 227.152228 L 407.842457 227.05799 L 408.271765 226.94281 L 408.742956 226.817159 L 409.224618 226.681037 L 409.727223 226.523973 L 410.826669 226.157491 L 411.413041 225.948073 L 412.020354 225.707241 L 412.65908 225.445468 L 413.329219 225.162754 L 414.0203 224.838155 L 414.742793 224.492615 L 415.486229 224.105191 L 416.261077 223.675883 L 417.056867 223.215163 L 417.873599 222.702087 L 418.711272 222.1576 L 419.569888 221.550286 L 420.438974 220.901089 L 421.329002 220.199538 L 422.229501 219.43516 L 423.13 218.6289 L 424.040971 217.749342 L 424.951941 216.817431 L 425.862911 215.833164 L 426.76341 214.786072 L 427.653438 213.676155 L 428.522524 212.503412 L 429.38114 211.278314 L 430.208343 210.000862 L 431.014603 208.671055 L 431.789451 207.288893 L 432.522416 205.854377 L 433.223968 204.367507 L 433.894106 202.849223 L 434.511891 201.289056 L 435.087791 199.697477 L 435.621808 198.064013 L 436.103471 196.409608 L 436.543249 194.734261 L 436.930673 193.037972 L 437.265743 191.320741 L 437.558929 189.593039 L 437.810231 187.854866 L 438.009178 186.106223 L 438.155771 184.357579 L 438.26048 182.619406 L 438.333777 180.870763 L 438.344248 179.143061 L 438.323306 177.415359 L 438.270951 175.698128 L 438.166242 173.991368 L 438.03012 172.30555 L 437.862585 170.640674 L 437.663638 168.986269 L 437.433277 167.352805 L 437.171504 165.750755 L 436.878319 164.159175 L 436.564191 162.599008 L 436.229122 161.059782 L 435.87311 159.55197 L 435.485686 158.065099 L 435.087791 156.609642 L 434.679425 155.175126 L 434.250118 153.772022 L 433.799868 152.400332 L 433.349619 151.049583 L 432.878427 149.730247 L 432.396765 148.442324 L 431.915103 147.175343 L 431.422969 145.939774 L 430.920365 144.725148 L 430.417761 143.552405 L 429.904686 142.400603 L 429.391611 141.269744 L 428.878536 140.170297 L 428.35499 139.102264 L 427.841915 138.055172 L 427.328839 137.029022 L 426.805293 136.034284 L 426.292218 135.060489 L 425.779143 134.118106 L 425.276539 133.196665 L 424.763464 132.296166 L 424.26086 131.416608 L 423.758256 130.568464 L 423.266122 129.741261 L 422.773989 128.92453 L 422.292327 128.139211 L 421.810665 127.374833 L 421.339473 126.631398 L 420.868282 125.898434 L 420.407561 125.196882 L 419.946841 124.505801 L 419.507062 123.835663 L 419.056813 123.186466 L 418.627505 122.55821 L 418.198197 121.940426 L 417.768889 121.343584 L 417.360523 120.757212 L 416.952158 120.191782 L 416.554263 119.636824 L 416.156368 119.102807 L 415.768944 118.579261 L 415.39199 118.076657 L 415.025508 117.584523 L 414.659026 117.102861 L 414.303015 116.642141 L 413.947003 116.191891 L 413.601463 115.752112 L 413.266394 115.322805 L 412.941795 114.903968 L 412.617197 114.495602 L 412.303069 114.108178 L 411.695756 113.354272 L 411.109384 112.642249 L 410.826669 112.30718 L 410.554425 111.97211 L 410.282181 111.647512 L 409.758635 111.040199 L 409.517804 110.736542 L 409.266502 110.453827 L 409.025671 110.181583 L 408.795311 109.909339 L 408.56495 109.647566 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(0%,44.709778%,74.119568%);stroke-opacity:1;stroke-miterlimit:10;" d="M 400.292924 228.000373 L 400.743173 228.000373 L 400.785057 228.010844 L 401.141068 228.010844 L 401.193423 228.021315 L 401.39237 228.021315 L 401.465667 228.031786 L 401.62273 228.031786 L 401.716969 228.042257 L 401.800736 228.042257 L 401.905445 228.052727 L 402.010154 228.052727 L 402.114864 228.063198 L 402.230044 228.063198 L 402.481346 228.08414 L 402.617468 228.094611 L 402.764061 228.105082 L 402.921124 228.115553 L 403.078188 228.136495 L 403.256194 228.146966 L 403.4342 228.167908 L 403.832095 228.209791 L 404.051984 228.241204 L 404.282344 228.272617 L 404.523175 228.30403 L 404.784948 228.335442 L 405.046721 228.377326 L 405.339907 228.429681 L 405.643564 228.482035 L 405.957691 228.53439 L 406.292761 228.597215 L 406.648772 228.670512 L 407.025725 228.754279 L 407.42362 228.838046 L 407.842457 228.942756 L 408.271765 229.057936 L 408.742956 229.183587 L 409.224618 229.319709 L 409.727223 229.476773 L 410.26124 229.644307 L 410.826669 229.843255 L 411.413041 230.052673 L 412.020354 230.293504 L 412.65908 230.555277 L 413.329219 230.837992 L 414.0203 231.162591 L 414.742793 231.508131 L 415.486229 231.895555 L 416.261077 232.324863 L 417.056867 232.785583 L 417.873599 233.298658 L 418.711272 233.843146 L 419.569888 234.45046 L 420.438974 235.099657 L 421.329002 235.801208 L 422.229501 236.565585 L 423.13 237.371846 L 424.040971 238.251403 L 424.951941 239.183315 L 425.862911 240.167582 L 426.76341 241.214674 L 427.653438 242.324591 L 428.522524 243.497334 L 429.38114 244.711961 L 430.208343 245.999884 L 431.014603 247.329691 L 431.789451 248.711852 L 432.522416 250.146368 L 433.223968 251.633239 L 433.894106 253.151522 L 434.511891 254.711689 L 435.087791 256.303269 L 435.621808 257.936733 L 436.103471 259.591138 L 436.543249 261.266485 L 436.930673 262.962774 L 437.265743 264.680005 L 437.558929 266.407707 L 437.810231 268.145879 L 438.009178 269.894523 L 438.155771 271.632696 L 438.26048 273.381339 L 438.333777 275.129983 L 438.344248 276.857685 L 438.323306 278.585387 L 438.270951 280.302617 L 438.166242 282.009377 L 438.03012 283.695195 L 437.862585 285.360072 L 437.663638 287.014477 L 437.433277 288.63747 L 437.171504 290.249991 L 436.878319 291.841571 L 436.564191 293.401738 L 436.229122 294.930492 L 435.87311 296.448776 L 435.485686 297.935646 L 435.087791 299.391104 L 434.679425 300.82562 L 434.250118 302.228723 L 433.799868 303.600414 L 433.349619 304.951163 L 432.878427 306.270499 L 432.396765 307.558422 L 431.915103 308.825403 L 431.422969 310.060972 L 430.920365 311.265127 L 430.417761 312.448341 L 429.904686 313.600142 L 429.391611 314.731002 L 428.878536 315.830448 L 428.35499 316.898482 L 427.841915 317.945574 L 427.328839 318.971724 L 426.805293 319.966462 L 426.292218 320.940257 L 425.779143 321.88264 L 425.276539 322.804081 L 424.763464 323.70458 L 424.26086 324.584137 L 423.758256 325.432282 L 423.266122 326.259484 L 422.773989 327.076216 L 422.292327 327.861535 L 421.810665 328.625912 L 421.339473 329.369348 L 420.868282 330.102312 L 420.407561 330.803864 L 419.946841 331.494944 L 419.507062 332.165083 L 419.056813 332.81428 L 418.627505 333.442535 L 418.198197 334.06032 L 417.768889 334.657162 L 417.360523 335.243534 L 416.952158 335.808963 L 416.554263 336.363922 L 416.156368 336.897939 L 415.768944 337.421485 L 415.39199 337.924089 L 415.025508 338.416222 L 414.659026 338.897885 L 414.303015 339.358605 L 413.947003 339.808855 L 413.601463 340.248633 L 413.266394 340.677941 L 412.941795 341.096778 L 412.617197 341.494673 L 412.303069 341.892568 L 411.695756 342.646474 L 411.109384 343.358497 L 410.826669 343.693566 L 410.554425 344.028635 L 410.282181 344.342763 L 410.020408 344.656891 L 409.758635 344.960547 L 409.517804 345.253733 L 409.266502 345.546919 L 409.025671 345.819163 L 408.795311 346.091407 L 408.56495 346.35318 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(0%,44.709778%,74.119568%);stroke-opacity:1;stroke-miterlimit:10;" d="M 290.055076 419.042305 L 290.348261 418.937596 L 294.787932 417.325074 L 299.018183 415.743965 L 303.039017 414.194269 L 306.881844 412.686457 L 310.546666 411.199586 L 314.033483 409.744128 L 317.373706 408.330554 L 320.556866 406.937922 L 323.603904 405.576702 L 326.504349 404.246895 L 329.289614 402.948501 L 331.949227 401.68152 L 334.493661 400.445951 L 336.922914 399.241796 L 339.25793 398.058582 L 341.488236 396.90678 L 343.634774 395.775921 L 345.676604 394.686945 L 347.645137 393.618912 L 349.529902 392.57182 L 351.341372 391.55614 L 353.069073 390.561403 L 354.73395 389.598078 L 356.336 388.655696 L 357.864755 387.734255 L 359.341155 386.844227 L 360.754729 385.97514 L 362.115948 385.126996 L 363.424813 384.299793 L 364.681324 383.493532 L 365.88548 382.708213 L 367.047752 381.943836 L 368.16814 381.200401 L 369.246645 380.477907 L 370.283266 379.776356 L 371.278004 379.095746 L 372.241328 378.436078 L 373.162769 377.786881 L 374.052797 377.158626 L 374.921884 376.540841 L 375.749087 375.943999 L 376.544876 375.368098 L 377.309254 374.802669 L 378.052689 374.258181 L 378.764712 373.724164 L 379.455792 373.200618 L 380.125931 372.698014 L 380.764657 372.205881 L 381.382442 371.734689 L 381.989755 371.263498 L 382.565656 370.813248 L 383.120614 370.383941 L 383.654631 369.954633 L 384.178177 369.535796 L 384.680781 369.137901 L 385.162444 368.750477 L 385.633635 368.363053 L 386.094356 367.996571 L 386.523663 367.64056 L 386.952971 367.295019 L 387.361337 366.949479 L 387.759232 366.62488 L 388.136185 366.300282 L 388.513138 365.986154 L 388.86915 365.682498 L 389.21469 365.389312 L 389.549759 365.106597 L 389.874358 364.834353 L 390.188486 364.562109 L 390.492142 364.300336 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(85.099792%,32.548523%,9.799194%);fill-opacity:1;" d="M 134.476562 22.199219 C 135.71875 22.199219 136.726562 23.207031 136.726562 24.449219 C 136.726562 25.691406 135.71875 26.699219 134.476562 26.699219 C 133.234375 26.699219 132.226562 25.691406 132.226562 24.449219 C 132.226562 23.207031 133.234375 22.199219 134.476562 22.199219 Z M 134.476562 20.699219 C 132.40625 20.699219 130.726562 22.378906 130.726562 24.449219 C 130.726562 26.519531 132.40625 28.199219 134.476562 28.199219 C 136.546875 28.199219 138.226562 26.519531 138.226562 24.449219 C 138.226562 22.378906 136.546875 20.699219 134.476562 20.699219 Z M 134.476562 20.699219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(85.099792%,32.548523%,9.799194%);fill-opacity:1;" d="M 134.476562 117.207031 C 135.71875 117.207031 136.726562 118.214844 136.726562 119.457031 C 136.726562 120.699219 135.71875 121.707031 134.476562 121.707031 C 133.234375 121.707031 132.226562 120.699219 132.226562 119.457031 C 132.226562 118.214844 133.234375 117.207031 134.476562 117.207031 Z M 134.476562 115.707031 C 132.40625 115.707031 130.726562 117.382812 130.726562 119.457031 C 130.726562 121.527344 132.40625 123.207031 134.476562 123.207031 C 136.546875 123.207031 138.226562 121.527344 138.226562 119.457031 C 138.226562 117.382812 136.546875 115.707031 134.476562 115.707031 Z M 134.476562 115.707031 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(85.099792%,32.548523%,9.799194%);fill-opacity:1;" d="M 134.476562 22.199219 C 135.71875 22.199219 136.726562 23.207031 136.726562 24.449219 C 136.726562 25.691406 135.71875 26.699219 134.476562 26.699219 C 133.234375 26.699219 132.226562 25.691406 132.226562 24.449219 C 132.226562 23.207031 133.234375 22.199219 134.476562 22.199219 Z M 134.476562 20.699219 C 132.40625 20.699219 130.726562 22.378906 130.726562 24.449219 C 130.726562 26.519531 132.40625 28.199219 134.476562 28.199219 C 136.546875 28.199219 138.226562 26.519531 138.226562 24.449219 C 138.226562 22.378906 136.546875 20.699219 134.476562 20.699219 Z M 134.476562 20.699219 "/>
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(85.099792%,32.548523%,9.799194%);fill-opacity:1;" d="M 134.476562 117.207031 C 135.71875 117.207031 136.726562 118.214844 136.726562 119.457031 C 136.726562 120.699219 135.71875 121.707031 134.476562 121.707031 C 133.234375 121.707031 132.226562 120.699219 132.226562 119.457031 C 132.226562 118.214844 133.234375 117.207031 134.476562 117.207031 Z M 134.476562 115.707031 C 132.40625 115.707031 130.726562 117.382812 130.726562 119.457031 C 130.726562 121.527344 132.40625 123.207031 134.476562 123.207031 C 136.546875 123.207031 138.226562 121.527344 138.226562 119.457031 C 138.226562 117.382812 136.546875 115.707031 134.476562 115.707031 Z M 134.476562 115.707031 "/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(85.099792%,32.548523%,9.799194%);stroke-opacity:1;stroke-miterlimit:10;" d="M 358.765254 36.958441 L 359.089853 37.303981 L 360.660491 39.042154 L 362.157832 40.738443 L 363.602819 42.382377 L 364.97451 43.994899 L 366.293846 45.555066 L 367.560827 47.08382 L 368.764983 48.570691 L 369.927255 50.015678 L 371.037172 51.429252 L 372.105206 52.790472 L 373.120886 54.130749 L 374.105152 55.429143 L 375.037064 56.696125 L 375.937563 57.921222 L 376.806649 59.114907 L 377.633852 60.28765 L 378.440113 61.41851 L 379.20449 62.517956 L 379.937455 63.58599 L 380.649477 64.633082 L 381.319616 65.648761 L 381.979284 66.633028 L 382.607539 67.596352 L 383.204382 68.528264 L 383.790753 69.428763 L 384.345712 70.318791 L 384.8902 71.166936 L 385.403275 72.004609 L 385.905879 72.81087 L 386.377071 73.60666 L 386.837791 74.371037 L 387.288041 75.114473 L 387.717348 75.836966 L 388.125714 76.538518 L 388.523609 77.219128 L 388.911033 77.889266 L 389.277515 78.538463 L 389.633527 79.166719 L 389.979067 79.774032 L 390.303666 80.360403 L 390.628264 80.936304 L 390.931921 81.501734 L 391.235578 82.046222 L 391.518292 82.569768 L 391.790536 83.093314 L 392.06278 83.585447 L 392.324553 84.07758 L 392.565384 84.548771 L 393.047047 85.44927 L 393.266936 85.878578 L 393.486825 86.297415 L 393.696244 86.705781 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(85.099792%,32.548523%,9.799194%);stroke-opacity:1;stroke-miterlimit:10;" d="M 272.830412 227.7386 L 272.830412 227.518711 L 272.819941 227.487298 L 272.819941 225.906189 L 272.830412 225.780538 L 272.830412 225.35123 L 272.840883 225.194166 L 272.840883 225.026632 L 272.851354 224.838155 L 272.851354 224.649679 L 272.861825 224.44026 L 272.861825 224.230842 L 272.882766 223.749179 L 272.903708 223.487406 L 272.914179 223.204692 L 272.935121 222.911506 L 272.956063 222.597378 L 272.977005 222.262309 L 272.997947 221.895827 L 273.029359 221.518874 L 273.060772 221.110508 L 273.102656 220.6812 L 273.15501 220.220479 L 273.207365 219.728346 L 273.270191 219.2048 L 273.333016 218.639371 L 273.416783 218.052999 L 273.511022 217.414273 L 273.615731 216.733663 L 273.741382 216.01117 L 273.887975 215.236322 L 274.045039 214.409119 L 274.243986 213.519091 L 274.463875 212.576708 L 274.715178 211.5715 L 275.008363 210.492995 L 275.353904 209.351665 L 275.741328 208.126567 L 276.202048 206.817702 L 276.725594 205.435541 L 277.343378 203.959141 L 278.055401 202.388503 L 278.872133 200.734098 L 279.824987 198.985454 L 280.924433 197.153043 L 282.201885 195.236865 L 283.657343 193.257861 L 285.343162 191.216032 L 287.248869 189.142789 L 289.42682 187.059076 L 291.866545 184.996305 L 294.599455 183.00683 L 297.61508 181.111594 L 300.91342 179.373421 L 304.473533 177.823725 L 308.284948 176.504389 L 312.29531 175.457297 L 316.473207 174.703391 L 320.776755 174.263612 L 325.1536 174.137961 L 329.572328 174.326438 L 333.991057 174.829042 L 338.378372 175.624832 L 342.702862 176.703337 L 346.922643 178.033144 L 351.037715 179.603781 L 355.027135 181.394309 L 358.869963 183.373313 L 362.576669 185.519851 L 366.11584 187.823454 L 369.497947 190.263178 L 372.722991 192.807611 L 375.79097 195.456754 L 378.701886 198.179193 L 381.445267 200.974929 L 384.042055 203.823019 L 386.492251 206.712993 L 388.795853 209.63438 L 390.963334 212.576708 L 392.984221 215.529507 L 394.879458 218.492778 L 396.649043 221.456048 L 398.303449 224.398376 L 399.832203 227.340705 L 401.256248 230.251621 L 402.575584 233.152065 L 403.800682 236.010627 L 404.931541 238.848246 L 405.957691 241.643981 L 406.910545 244.408304 L 407.779631 247.130743 L 408.575421 249.811299 L 409.297915 252.449971 L 409.957583 255.046759 L 410.543954 257.591192 L 411.077971 260.093742 L 411.549163 262.543937 L 411.968 264.952249 L 412.344953 267.308206 L 412.669551 269.611808 L 412.941795 271.873527 L 413.182626 274.082891 L 413.381574 276.2399 L 413.549108 278.355026 L 413.68523 280.417798 L 413.78994 282.438685 L 413.863236 284.407218 L 413.90512 286.323396 L 413.936533 288.197691 L 413.936533 290.030102 L 413.915591 291.810158 L 413.873707 293.558802 L 413.810881 295.255091 L 413.737585 296.909496 L 413.653818 298.511547 L 413.549108 300.082185 L 413.433928 301.62141 L 413.308277 303.108281 L 413.172155 304.553268 L 413.025562 305.966842 L 412.87897 307.349003 L 412.721906 308.689281 L 412.554371 309.987675 L 412.376365 311.254656 L 412.19836 312.490225 L 412.020354 313.694381 L 411.831878 314.856653 L 411.643401 315.997983 L 411.454924 317.107901 L 411.266448 318.175934 L 411.0675 319.223026 L 410.868553 320.238706 L 410.680076 321.233443 L 410.481129 322.196768 L 410.282181 323.128679 L 410.083234 324.039649 L 409.894757 324.929678 L 409.69581 325.788293 L 409.496862 326.625967 L 409.308386 327.432227 L 409.119909 328.228017 L 408.931433 328.992395 L 408.742956 329.73583 L 408.55448 330.468794 L 408.366003 331.170346 L 408.187997 331.861427 L 408.009992 332.521095 L 407.831986 333.170292 L 407.65398 333.798547 L 407.486446 334.416331 L 407.30844 335.002703 L 407.151376 335.578603 L 406.983842 336.144033 L 406.816307 336.688521 L 406.659243 337.222538 L 406.502179 337.735613 L 406.355586 338.238217 L 406.198523 338.719879 L 406.05193 339.19107 L 405.915808 339.651791 L 405.769215 340.10204 L 405.496971 340.960656 L 405.360849 341.369022 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(85.099792%,32.548523%,9.799194%);stroke-opacity:1;stroke-miterlimit:10;" d="M 272.830412 228.251675 L 272.830412 228.482035 L 272.819941 228.513448 L 272.819941 230.084086 L 272.830412 230.220208 L 272.830412 230.639045 L 272.840883 230.806579 L 272.840883 230.974114 L 272.851354 231.162591 L 272.851354 231.351067 L 272.861825 231.560486 L 272.861825 231.769904 L 272.882766 232.251566 L 272.903708 232.513339 L 272.914179 232.796054 L 272.935121 233.08924 L 272.956063 233.403368 L 272.977005 233.738437 L 272.997947 234.104919 L 273.029359 234.481872 L 273.060772 234.890238 L 273.102656 235.319546 L 273.15501 235.780266 L 273.207365 236.2724 L 273.270191 236.795946 L 273.333016 237.350904 L 273.416783 237.947747 L 273.511022 238.586473 L 273.615731 239.267083 L 273.741382 239.989576 L 273.887975 240.764424 L 274.045039 241.591627 L 274.243986 242.481655 L 274.463875 243.424038 L 274.715178 244.429246 L 275.008363 245.49728 L 275.353904 246.649081 L 275.741328 247.874179 L 276.202048 249.183044 L 276.725594 250.565205 L 277.343378 252.041605 L 278.055401 253.612243 L 278.872133 255.266648 L 279.824987 257.015292 L 280.924433 258.847703 L 282.201885 260.763881 L 283.657343 262.742885 L 285.343162 264.784714 L 287.248869 266.857956 L 289.42682 268.941669 L 291.866545 271.004441 L 294.599455 272.993915 L 297.61508 274.889152 L 300.91342 276.627325 L 304.473533 278.177021 L 308.284948 279.485886 L 312.29531 280.543449 L 316.473207 281.297355 L 320.776755 281.737133 L 325.1536 281.862784 L 329.572328 281.674308 L 333.991057 281.171704 L 338.378372 280.375914 L 342.702862 279.297409 L 346.922643 277.967602 L 351.037715 276.396964 L 355.027135 274.606437 L 358.869963 272.627433 L 362.576669 270.470424 L 366.11584 268.177292 L 369.497947 265.737568 L 372.722991 263.193134 L 375.79097 260.543992 L 378.701886 257.821553 L 381.445267 255.025817 L 384.042055 252.177727 L 386.492251 249.287753 L 388.795853 246.366366 L 390.963334 243.424038 L 392.984221 240.471238 L 394.879458 237.507968 L 396.649043 234.544698 L 398.303449 231.602369 L 399.832203 228.660041 L 401.256248 225.749125 L 402.575584 222.84868 L 403.800682 219.990119 L 404.931541 217.1525 L 405.957691 214.356764 L 406.910545 211.592442 L 407.779631 208.870002 L 408.575421 206.189447 L 409.297915 203.550775 L 409.957583 200.953987 L 410.543954 198.409553 L 411.077971 195.907004 L 411.549163 193.456808 L 411.968 191.048497 L 412.344953 188.69254 L 412.669551 186.388938 L 412.941795 184.127219 L 413.182626 181.917855 L 413.381574 179.760845 L 413.549108 177.645719 L 413.68523 175.582948 L 413.78994 173.562061 L 413.863236 171.593528 L 413.90512 169.67735 L 413.936533 167.803055 L 413.936533 165.970644 L 413.915591 164.190588 L 413.873707 162.441944 L 413.810881 160.745655 L 413.737585 159.09125 L 413.653818 157.478728 L 413.549108 155.918561 L 413.433928 154.379336 L 413.308277 152.892465 L 413.172155 151.447478 L 413.025562 150.033904 L 412.87897 148.651743 L 412.721906 147.311465 L 412.554371 146.013071 L 412.376365 144.746089 L 412.19836 143.510521 L 412.020354 142.306365 L 411.831878 141.144093 L 411.643401 140.002763 L 411.454924 138.892845 L 411.266448 137.824811 L 411.0675 136.777719 L 410.868553 135.751569 L 410.680076 134.767303 L 410.481129 133.803978 L 410.282181 132.872066 L 410.083234 131.961096 L 409.894757 131.071068 L 409.69581 130.212453 L 409.496862 129.374779 L 409.308386 128.568518 L 409.119909 127.772728 L 408.931433 127.008351 L 408.742956 126.264916 L 408.55448 125.531952 L 408.366003 124.8304 L 408.187997 124.139319 L 408.009992 123.479651 L 407.831986 122.830454 L 407.65398 122.202199 L 407.486446 121.584415 L 407.30844 120.998043 L 407.151376 120.411672 L 406.983842 119.856713 L 406.816307 119.312225 L 406.659243 118.778208 L 406.502179 118.265133 L 406.355586 117.762529 L 406.198523 117.280867 L 406.05193 116.809675 L 405.915808 116.348955 L 405.769215 115.898705 L 405.496971 115.04009 L 405.360849 114.631724 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
<path style="fill:none;stroke-width:4.020833;stroke-linecap:butt;stroke-linejoin:round;stroke:rgb(85.099792%,32.548523%,9.799194%);stroke-opacity:1;stroke-miterlimit:10;" d="M 358.765254 419.042305 L 359.089853 418.696765 L 360.660491 416.958592 L 362.157832 415.262303 L 363.602819 413.618369 L 364.97451 412.005847 L 366.293846 410.44568 L 367.560827 408.916926 L 368.764983 407.430055 L 369.927255 405.985068 L 371.037172 404.571494 L 372.105206 403.199803 L 373.120886 401.869996 L 374.105152 400.571602 L 375.037064 399.304621 L 375.937563 398.079523 L 376.806649 396.875368 L 377.633852 395.713096 L 378.440113 394.582236 L 379.20449 393.48279 L 379.937455 392.404285 L 380.649477 391.367664 L 381.319616 390.351985 L 381.979284 389.367718 L 382.607539 388.404394 L 383.204382 387.472482 L 383.790753 386.571983 L 384.345712 385.681954 L 384.8902 384.83381 L 385.403275 383.996136 L 385.905879 383.189876 L 386.377071 382.394086 L 386.837791 381.629708 L 387.288041 380.886273 L 387.717348 380.16378 L 388.125714 379.462228 L 388.523609 378.771147 L 388.911033 378.111479 L 389.277515 377.462282 L 389.633527 376.834027 L 389.979067 376.226714 L 390.303666 375.629871 L 390.628264 375.053971 L 390.931921 374.499012 L 391.235578 373.954524 L 391.518292 373.420507 L 391.790536 372.907432 L 392.06278 372.415299 L 392.324553 371.923166 L 392.565384 371.451974 L 392.806216 370.991254 L 393.047047 370.551475 L 393.486825 369.69286 L 393.696244 369.284494 " transform="matrix(0.373057,0,0,0.373057,-14.808637,-13.104012)"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 78 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 194 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 429 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 128 KiB

1
matlab/figs-paper Symbolic link
View File

@ -0,0 +1 @@
../paper/figs

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

1477
matlab/figs/plant_iff_kp.pdf Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 149 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

1541
matlab/index.html Normal file

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More