1495 lines
59 KiB
Org Mode
1495 lines
59 KiB
Org Mode
#+TITLE: Robust and Optimal Sensor Fusion - Matlab Computation
|
|
:DRAWER:
|
|
#+HTML_LINK_HOME: ./index.html
|
|
#+HTML_LINK_UP: ./index.html
|
|
|
|
#+BIND: org-latex-image-default-option "scale=1"
|
|
#+BIND: org-latex-image-default-width ""
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
|
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
|
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://cdn.rawgit.com/dreampulse/computer-modern-web-font/master/fonts.css">
|
|
|
|
#+STARTUP: overview
|
|
#+OPTIONS: toc:2
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+LATEX_CLASS: cleanreport
|
|
#+LATEX_CLASS_OPTIONS: [tocnp, minted, secbreak]
|
|
|
|
#+LATEX_HEADER: \newcommand{\authorFirstName}{Thomas}
|
|
#+LATEX_HEADER: \newcommand{\authorLastName}{Dehaeze}
|
|
#+LATEX_HEADER: \newcommand{\authorEmail}{dehaeze.thomas@gmail.com}
|
|
|
|
#+LATEX_HEADER_EXTRA: \makeatletter
|
|
#+LATEX_HEADER_EXTRA: \preto\Gin@extensions{png,}
|
|
#+LATEX_HEADER_EXTRA: \DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
|
|
#+LATEX_HEADER_EXTRA: \makeatother
|
|
|
|
#+LATEX_HEADER_EXTRA: \addbibresource{ref.bib}
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :tangle no
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+CSL_STYLE: ieee.csl
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
This document is arranged as follows:
|
|
- Section [[sec:sensor_description]]: the sensors are described (dynamics, uncertainty, noise)
|
|
- Section [[sec:introduction_sensor_fusion]]: the sensor fusion architecture is described and the super sensor noise and dynamical uncertainty are derived
|
|
- Section [[sec:optimal_comp_filters]]: the $\mathcal{H}_2$ synthesis is used to design complementary filters such that the RMS value of the super sensor's noise is minimized
|
|
- Section [[sec:comp_filter_robustness]]: the $\mathcal{H}_\infty$ synthesis is used to design complementary filters such that the super sensor's uncertainty is bonded to acceptable values
|
|
- Section [[sec:mixed_synthesis_sensor_fusion]]: the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is used to both limit the super sensor's uncertainty and to lower the RMS value of the super sensor's noise
|
|
- Section [[sec:matlab_functions]]: Matlab functions used for the analysis are described
|
|
|
|
* Sensor Description
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/sensor_description.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:sensor_description>>
|
|
|
|
** Introduction :ignore:
|
|
In Figure [[fig:sensor_model_noise_uncertainty]] is shown a schematic of a sensor model that is used in the following study.
|
|
In this example, the measured quantity $x$ is the velocity of an object.
|
|
|
|
#+name: tab:sensor_signals
|
|
#+caption: Description of signals in Figure [[fig:sensor_model_noise_uncertainty]]
|
|
#+attr_latex: :environment tabular :align clc
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
| *Notation* | *Meaning* | *Unit* |
|
|
|---------------+---------------------------------+---------|
|
|
| $x$ | Physical measured quantity | $[m/s]$ |
|
|
| $\tilde{n}_i$ | White noise with unitary PSD | |
|
|
| $n_i$ | Shaped noise | $[m/s]$ |
|
|
| $v_i$ | Sensor output measurement | $[V]$ |
|
|
| $\hat{x}_i$ | Estimate of $x$ from the sensor | $[m/s]$ |
|
|
|
|
#+name: tab:sensor_dynamical_blocks
|
|
#+caption: Description of Systems in Figure [[fig:sensor_model_noise_uncertainty]]
|
|
#+attr_latex: :environment tabular :align clc
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
| *Notation* | *Meaning* | *Unit* |
|
|
|-------------+------------------------------------------------------------------------------+-------------------|
|
|
| $\hat{G}_i$ | Nominal Sensor Dynamics | $[\frac{V}{m/s}]$ |
|
|
| $W_i$ | Weight representing the size of the uncertainty at each frequency | |
|
|
| $\Delta_i$ | Any complex perturbation such that $\vert\vert\Delta_i\vert\vert_\infty < 1$ | |
|
|
| $N_i$ | Weight representing the sensor noise | $[m/s]$ |
|
|
|
|
#+name: fig:sensor_model_noise_uncertainty
|
|
#+caption: Sensor Model
|
|
#+RESULTS:
|
|
[[file:figs-tikz/sensor_model_noise_uncertainty.png]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
addpath('src');
|
|
freqs = logspace(0, 4, 1000);
|
|
#+end_src
|
|
|
|
** Sensor Dynamics
|
|
<<sec:sensor_dynamics>>
|
|
Let's consider two sensors measuring the velocity of an object.
|
|
|
|
The first sensor is an accelerometer.
|
|
Its nominal dynamics $\hat{G}_1(s)$ is defined below.
|
|
#+begin_src matlab
|
|
m_acc = 0.01; % Inertial Mass [kg]
|
|
c_acc = 5; % Damping [N/(m/s)]
|
|
k_acc = 1e5; % Stiffness [N/m]
|
|
g_acc = 1e5; % Gain [V/m]
|
|
|
|
G1 = g_acc*m_acc*s/(m_acc*s^2 + c_acc*s + k_acc); % Accelerometer Plant [V/(m/s)]
|
|
#+end_src
|
|
|
|
The second sensor is a displacement sensor, its nominal dynamics $\hat{G}_2(s)$ is defined below.
|
|
#+begin_src matlab
|
|
w_pos = 2*pi*2e3; % Measurement Banwdith [rad/s]
|
|
g_pos = 1e4; % Gain [V/m]
|
|
|
|
G2 = g_pos/s/(1 + s/w_pos); % Position Sensor Plant [V/(m/s)]
|
|
#+end_src
|
|
|
|
These nominal dynamics are also taken as the model of the sensor dynamics.
|
|
The true sensor dynamics has some uncertainty associated to it and described in section [[sec:sensor_uncertainty]].
|
|
|
|
Both sensor dynamics in $[\frac{V}{m/s}]$ are shown in Figure [[fig:sensors_nominal_dynamics]].
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G1, freqs, 'Hz'))), '-', 'DisplayName', '$G_1(j\omega)$');
|
|
plot(freqs, abs(squeeze(freqresp(G2, freqs, 'Hz'))), '-', 'DisplayName', '$G_2(j\omega)$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Magnitude $[\frac{V}{m/s}]$'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northeast');
|
|
hold off;
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G1, freqs, 'Hz'))), '-');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G2, freqs, 'Hz'))), '-');
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensors_nominal_dynamics.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:sensors_nominal_dynamics
|
|
#+caption: Sensor nominal dynamics from the velocity of the object to the output voltage
|
|
#+RESULTS:
|
|
[[file:figs/sensors_nominal_dynamics.png]]
|
|
|
|
** Sensor Model Uncertainty
|
|
<<sec:sensor_uncertainty>>
|
|
The uncertainty on the sensor dynamics is described by multiplicative uncertainty (Figure [[fig:sensor_model_noise_uncertainty]]).
|
|
|
|
The true sensor dynamics $G_i(s)$ is then described by eqref:eq:sensor_dynamics_uncertainty.
|
|
|
|
\begin{equation}
|
|
G_i(s) = \hat{G}_i(s) \left( 1 + W_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \label{eq:sensor_dynamics_uncertainty}
|
|
\end{equation}
|
|
|
|
The weights $W_i(s)$ representing the dynamical uncertainty are defined below and their magnitude is shown in Figure [[fig:sensors_uncertainty_weights]].
|
|
#+begin_src matlab
|
|
W1 = createWeight('n', 2, 'w0', 2*pi*3, 'G0', 2, 'G1', 0.1, 'Gc', 1) * ...
|
|
createWeight('n', 2, 'w0', 2*pi*1e3, 'G0', 1, 'G1', 4/0.1, 'Gc', 1/0.1);
|
|
|
|
W2 = createWeight('n', 2, 'w0', 2*pi*1e2, 'G0', 0.05, 'G1', 4, 'Gc', 1);
|
|
#+end_src
|
|
|
|
The bode plot of the sensors nominal dynamics as well as their defined dynamical spread are shown in Figure [[fig:sensors_nominal_dynamics_and_uncertainty]].
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(W1, freqs, 'Hz'))), 'DisplayName', '$|W_1(j\omega)|$');
|
|
plot(freqs, abs(squeeze(freqresp(W2, freqs, 'Hz'))), 'DisplayName', '$|W_2(j\omega)|$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
|
ylim([0, 5]);
|
|
xlim([freqs(1), freqs(end)]);
|
|
legend('location', 'northwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensors_uncertainty_weights.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:sensors_uncertainty_weights
|
|
#+caption: Magnitude of the multiplicative uncertainty weights $|W_i(j\omega)|$
|
|
#+RESULTS:
|
|
[[file:figs/sensors_uncertainty_weights.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plotMagUncertainty(W1, freqs, 'G', G1, 'color_i', 1, 'DisplayName', '$G_1$');
|
|
plotMagUncertainty(W2, freqs, 'G', G2, 'color_i', 2, 'DisplayName', '$G_2$');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(G1, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_1$');
|
|
plot(freqs, abs(squeeze(freqresp(G2, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_2$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylabel('Magnitude $[\frac{V}{m/s}]$');
|
|
ylim([1e-2, 2e3]);
|
|
legend('location', 'northeast');
|
|
hold off;
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plotPhaseUncertainty(W1, freqs, 'G', G1, 'color_i', 1);
|
|
plotPhaseUncertainty(W2, freqs, 'G', G2, 'color_i', 2);
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G1, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_1$');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G2, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_2$');
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensors_nominal_dynamics_and_uncertainty.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:sensors_nominal_dynamics_and_uncertainty
|
|
#+caption: Nominal Sensor Dynamics $\hat{G}_i$ (solid lines) as well as the spread of the dynamical uncertainty (background color)
|
|
#+RESULTS:
|
|
[[file:figs/sensors_nominal_dynamics_and_uncertainty.png]]
|
|
|
|
** Sensor Noise
|
|
<<sec:sensor_noise>>
|
|
The noise of the sensors $n_i$ are modelled by shaping a white noise with unitary PSD $\tilde{n}_i$ eqref:eq:unitary_noise_psd with a LTI transfer function $N_i(s)$ (Figure [[fig:sensor_model_noise_uncertainty]]).
|
|
\begin{equation}
|
|
\Phi_{\tilde{n}_i}(\omega) = 1 \label{eq:unitary_noise_psd}
|
|
\end{equation}
|
|
|
|
The Power Spectral Density of the sensor noise $\Phi_{n_i}(\omega)$ is then computed using eqref:eq:sensor_noise_shaping and expressed in $[\frac{(m/s)^2}{Hz}]$.
|
|
\begin{equation}
|
|
\Phi_{n_i}(\omega) = \left| N_i(j\omega) \right|^2 \Phi_{\tilde{n}_i}(\omega) \label{eq:sensor_noise_shaping}
|
|
\end{equation}
|
|
|
|
The weights $N_1$ and $N_2$ representing the amplitude spectral density of the sensor noises are defined below and shown in Figure [[fig:sensors_noise]].
|
|
#+begin_src matlab
|
|
omegac = 0.15*2*pi; G0 = 1e-1; Ginf = 1e-6;
|
|
N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);
|
|
|
|
omegac = 1000*2*pi; G0 = 1e-6; Ginf = 1e-3;
|
|
N2 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1(j\omega)|$');
|
|
plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2(j\omega)|$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[ \frac{m/s}{\sqrt{Hz}} \right]$');
|
|
hold off;
|
|
xlim([freqs(1), freqs(end)]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensors_noise.pdf', 'width', 'normal', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:sensors_noise
|
|
#+caption: Amplitude spectral density of the sensors $\sqrt{\Phi_{n_i}(\omega)} = |N_i(j\omega)|$
|
|
#+RESULTS:
|
|
[[file:figs/sensors_noise.png]]
|
|
|
|
** Save Model
|
|
All the dynamical systems representing the sensors are saved for further use.
|
|
|
|
#+begin_src matlab
|
|
save('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');
|
|
#+end_src
|
|
|
|
* Introduction to Sensor Fusion
|
|
<<sec:introduction_sensor_fusion>>
|
|
|
|
** Sensor Fusion Architecture
|
|
<<sec:sensor_fusion_architecture>>
|
|
|
|
The two sensors presented in Section [[sec:sensor_description]] are now merged together using complementary filters $H_1(s)$ and $H_2(s)$ to form a super sensor (Figure [[fig:sensor_fusion_noise_arch]]).
|
|
|
|
#+name: fig:sensor_fusion_noise_arch
|
|
#+caption: Sensor Fusion Architecture
|
|
[[file:figs-tikz/sensor_fusion_noise_arch.png]]
|
|
|
|
The complementary property of $H_1(s)$ and $H_2(s)$ means that the sum of their transfer function is equal to $1$ eqref:eq:complementary_property.
|
|
|
|
\begin{equation}
|
|
H_1(s) + H_2(s) = 1 \label{eq:complementary_property}
|
|
\end{equation}
|
|
|
|
The super sensor estimate $\hat{x}$ is given by eqref:eq:super_sensor_estimate.
|
|
|
|
\begin{equation}
|
|
\hat{x} = \left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x + \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \label{eq:super_sensor_estimate}
|
|
\end{equation}
|
|
|
|
** Super Sensor Noise
|
|
<<sec:super_sensor_noise>>
|
|
|
|
If we first suppose that the models of the sensors $\hat{G}_i$ are very close to the true sensor dynamics $G_i$ eqref:eq:good_dynamical_model, we have that the super sensor estimate $\hat{x}$ is equals to the measured quantity $x$ plus the noise of the two sensors filtered out by the complementary filters eqref:eq:estimate_perfect_models.
|
|
|
|
\begin{equation}
|
|
\hat{G}_i^{-1}(s) G_i(s) \approx 1 \label{eq:good_dynamical_model}
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
\hat{x} = x + \underbrace{\left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2}_{n} \label{eq:estimate_perfect_models}
|
|
\end{equation}
|
|
|
|
As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow:
|
|
\begin{equation}
|
|
\Phi_n(\omega) = \left| H_1(j\omega) N_1(j\omega) \right|^2 + \left| H_2(j\omega) N_2(j\omega) \right|^2 \label{eq:super_sensor_psd_noise}
|
|
\end{equation}
|
|
|
|
And the Root Mean Square (RMS) value of the super sensor noise $\sigma_n$ is given by Equation eqref:eq:super_sensor_rms_noise.
|
|
\begin{equation}
|
|
\sigma_n = \sqrt{\int_0^\infty \Phi_n(\omega) d\omega} \label{eq:super_sensor_rms_noise}
|
|
\end{equation}
|
|
|
|
** Super Sensor Dynamical Uncertainty
|
|
<<sec:super_sensor_dynamical_uncertainty>>
|
|
|
|
If we consider some dynamical uncertainty (the true system dynamics $G_i$ not being perfectly equal to our model $\hat{G}_i$) that we model by the use of multiplicative uncertainty (Figure [[fig:sensor_model_uncertainty]]), the super sensor dynamics is then equals to:
|
|
|
|
\begin{equation}
|
|
\begin{aligned}
|
|
\frac{\hat{x}}{x} &= \Big( H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + W_1 \Delta_1) + H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + W_2 \Delta_2) \Big) \\
|
|
&= \Big( H_1 (1 + W_1 \Delta_1) + H_2 (1 + W_2 \Delta_2) \Big) \\
|
|
&= \left( 1 + H_1 W_1 \Delta_1 + H_2 W_2 \Delta_2 \right), \quad \|\Delta_i\|_\infty<1
|
|
\end{aligned}
|
|
\end{equation}
|
|
|
|
#+name: fig:sensor_model_uncertainty
|
|
#+caption: Sensor Model including Dynamical Uncertainty
|
|
[[file:figs-tikz/sensor_model_uncertainty.png]]
|
|
|
|
The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|$ as shown in Figure [[fig:uncertainty_set_super_sensor]].
|
|
|
|
#+name: fig:uncertainty_set_super_sensor
|
|
#+caption: Super Sensor model uncertainty displayed in the complex plane
|
|
[[file:figs-tikz/uncertainty_set_super_sensor.png]]
|
|
|
|
* Optimal Super Sensor Noise: $\mathcal{H}_2$ Synthesis
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/optimal_comp_filters.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:optimal_comp_filters>>
|
|
|
|
** Introduction :ignore:
|
|
In this section, the complementary filters $H_1(s)$ and $H_2(s)$ are designed in order to minimize the RMS value of super sensor noise $\sigma_n$.
|
|
|
|
#+name: fig:sensor_fusion_noise_arch
|
|
#+caption: Optimal Sensor Fusion Architecture
|
|
[[file:figs-tikz/sensor_fusion_noise_arch.png]]
|
|
|
|
The RMS value of the super sensor noise is (neglecting the model uncertainty):
|
|
\begin{equation}
|
|
\begin{aligned}
|
|
\sigma_{n} &= \sqrt{\int_0^\infty |H_1(j\omega) N_1(j\omega)|^2 + |H_2(j\omega) N_2(j\omega)|^2 d\omega} \\
|
|
&= \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2
|
|
\end{aligned}
|
|
\end{equation}
|
|
|
|
The goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ (complementary property) and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized (minimized RMS value of the super sensor noise).
|
|
This is done using the $\mathcal{H}_2$ synthesis in Section [[sec:H2_synthesis]].
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
addpath('src');
|
|
load('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');
|
|
#+end_src
|
|
|
|
** $\mathcal{H}_2$ Synthesis
|
|
<<sec:H2_synthesis>>
|
|
|
|
Consider the generalized plant $P_{\mathcal{H}_2}$ shown in Figure [[fig:h_two_optimal_fusion]] and described by Equation eqref:eq:H2_generalized_plant.
|
|
|
|
#+name: fig:h_two_optimal_fusion
|
|
#+caption: Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters
|
|
[[file:figs-tikz/h_two_optimal_fusion.png]]
|
|
|
|
\begin{equation} \label{eq:H2_generalized_plant}
|
|
\begin{pmatrix}
|
|
z_1 \\ z_2 \\ v
|
|
\end{pmatrix} = \underbrace{\begin{bmatrix}
|
|
N_1 & -N_1 \\
|
|
0 & N_2 \\
|
|
1 & 0
|
|
\end{bmatrix}}_{P_{\mathcal{H}_2}} \begin{pmatrix}
|
|
w \\ u
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
|
|
Applying the $\mathcal{H}_2$ synthesis on $P_{\mathcal{H}_2}$ will generate a filter $H_2(s)$ such that the $\mathcal{H}_2$ norm from $w$ to $(z_1,z_2)$ which is actually equals to $\sigma_n$ by defining $H_1(s) = 1 - H_2(s)$:
|
|
\begin{equation}
|
|
\left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_2 = \left\| \begin{matrix} N_1 (1 - H_2) \\ N_2 H_2 \end{matrix} \right\|_2 = \sigma_n \quad \text{with} \quad H_1(s) = 1 - H_2(s)
|
|
\end{equation}
|
|
|
|
We then have that the $\mathcal{H}_2$ synthesis applied on $P_{\mathcal{H}_2}$ generates two complementary filters $H_1(s)$ and $H_2(s)$ such that the RMS value of super sensor noise is minimized.
|
|
|
|
The generalized plant $P_{\mathcal{H}_2}$ is defined below
|
|
#+begin_src matlab
|
|
PH2 = [N1 -N1;
|
|
0 N2;
|
|
1 0];
|
|
#+end_src
|
|
|
|
The $\mathcal{H}_2$ synthesis using the =h2syn= command
|
|
#+begin_src matlab
|
|
[H2, ~, gamma] = h2syn(PH2, 1, 1);
|
|
#+end_src
|
|
|
|
Finally, $H_1(s)$ is defined as follows
|
|
#+begin_src matlab
|
|
H1 = 1 - H2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
% Filters are saved for further use
|
|
save('./mat/H2_filters.mat', 'H2', 'H1');
|
|
#+end_src
|
|
|
|
The obtained complementary filters are shown in Figure [[fig:htwo_comp_filters]].
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), 'DisplayName', '$H_1$');
|
|
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), 'DisplayName', '$H_2$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylabel('Magnitude');
|
|
hold off;
|
|
legend('location', 'northeast');
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(H1, freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(H2, freqs, 'Hz'))));
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/htwo_comp_filters.pdf', 'width', 'full', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:htwo_comp_filters
|
|
#+caption: Obtained complementary filters using the $\mathcal{H}_2$ Synthesis
|
|
#+RESULTS:
|
|
[[file:figs/htwo_comp_filters.png]]
|
|
|
|
** Super Sensor Noise
|
|
<<sec:H2_super_sensor_noise>>
|
|
|
|
The Power Spectral Density of the individual sensors' noise $\Phi_{n_1}, \Phi_{n_2}$ and of the super sensor noise $\Phi_{n_{\mathcal{H}_2}}$ are computed below and shown in Figure [[fig:psd_sensors_htwo_synthesis]].
|
|
#+begin_src matlab
|
|
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
|
|
PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
|
|
PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
|
|
abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
|
|
#+end_src
|
|
|
|
The RMS value of the individual sensors and of the super sensor are listed in Table [[tab:rms_noise_H2]].
|
|
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
|
data2orgtable([sqrt(trapz(freqs, PSD_S1)); sqrt(trapz(freqs, PSD_S2)); sqrt(trapz(freqs, PSD_H2))], ...
|
|
{'$\sigma_{n_1}$', '$\sigma_{n_2}$', '$\sigma_{n_{\mathcal{H}_2}}$'}, ...
|
|
{'RMS value $[m/s]$'}, ' %.3f ');
|
|
#+end_src
|
|
|
|
#+name: tab:rms_noise_H2
|
|
#+caption: RMS value of the individual sensor noise and of the super sensor using the $\mathcal{H}_2$ Synthesis
|
|
#+attr_latex: :environment tabular :align cc
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
#+RESULTS:
|
|
| | RMS value $[m/s]$ |
|
|
|------------------------------+-------------------|
|
|
| $\sigma_{n_1}$ | 0.015 |
|
|
| $\sigma_{n_2}$ | 0.080 |
|
|
| $\sigma_{n_{\mathcal{H}_2}}$ | 0.003 |
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{n_1}$');
|
|
plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{n_2}$');
|
|
plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{n_{\mathcal{H}_2}}$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Power Spectral Density $\left[ \frac{(m/s)^2}{Hz} \right]$');
|
|
hold off;
|
|
xlim([freqs(1), freqs(end)]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sensors_htwo_synthesis.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sensors_htwo_synthesis
|
|
#+caption: Power Spectral Density of the estimated $\hat{x}$ using the two sensors alone and using the optimally fused signal
|
|
#+RESULTS:
|
|
[[file:figs/psd_sensors_htwo_synthesis.png]]
|
|
|
|
A time domain simulation is now performed.
|
|
The measured velocity $x$ is set to be a sweep sine with an amplitude of $0.1\ [m/s]$.
|
|
The velocity estimates from the two sensors and from the super sensors are shown in Figure [[fig:super_sensor_time_domain_h2]].
|
|
The resulting noises are displayed in Figure [[fig:sensor_noise_H2_time_domain]].
|
|
|
|
#+begin_src matlab :exports none
|
|
Fs = 1e4; % Sampling Frequency [Hz]
|
|
Ts = 1/Fs; % Sampling Time [s]
|
|
|
|
t = 0:Ts:2; % Time Vector [s]
|
|
|
|
v = 0.1*sin((10*t).*t)'; % Velocity measured [m/s]
|
|
|
|
% Generate noises in velocity corresponding to sensor 1 and 2:
|
|
n1 = lsim(N1, sqrt(Fs/2)*randn(length(t), 1), t);
|
|
n2 = lsim(N2, sqrt(Fs/2)*randn(length(t), 1), t);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(t, v + n2, 'DisplayName', '$\hat{x}_2$');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(t, v + n1, 'DisplayName', '$\hat{x}_1$');
|
|
set(gca,'ColorOrderIndex',3)
|
|
plot(t, v + (lsim(H1, n1, t) + lsim(H2, n2, t)), 'DisplayName', '$\hat{x}$');
|
|
plot(t, v, 'k--', 'DisplayName', '$x$');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Velocity [m/s]');
|
|
legend('location', 'southwest');
|
|
ylim([-0.3, 0.3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/super_sensor_time_domain_h2.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:super_sensor_time_domain_h2
|
|
#+caption: Noise of individual sensors and noise of the super sensor
|
|
#+RESULTS:
|
|
[[file:figs/super_sensor_time_domain_h2.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(t, n2, 'DisplayName', '$n_2$');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(t, n1, 'DisplayName', '$n_1$');
|
|
set(gca,'ColorOrderIndex',3)
|
|
plot(t, (lsim(H1, n1, t)+lsim(H2, n2, t)), '-', 'DisplayName', '$n$');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Sensor Noise [m/s]');
|
|
legend();
|
|
ylim([-0.2, 0.2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensor_noise_H2_time_domain.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:sensor_noise_H2_time_domain
|
|
#+caption: Noise of the two sensors $n_1, n_2$ and noise of the super sensor $n$
|
|
#+RESULTS:
|
|
[[file:figs/sensor_noise_H2_time_domain.png]]
|
|
|
|
** Discrepancy between sensor dynamics and model
|
|
If we consider sensor dynamical uncertainty as explained in Section [[sec:sensor_uncertainty]], we can compute what would be the super sensor dynamical uncertainty when using the complementary filters obtained using the $\mathcal{H}_2$ Synthesis.
|
|
|
|
The super sensor dynamical uncertainty is shown in Figure [[fig:super_sensor_dynamical_uncertainty_H2]].
|
|
|
|
It is shown that the phase uncertainty is not bounded between 100Hz and 200Hz.
|
|
As a result the super sensor signal can not be used for feedback applications about 100Hz.
|
|
#+begin_src matlab :exports none
|
|
Dphi_ss = 180/pi*asin(abs(squeeze(freqresp(W2*H2, freqs, 'Hz'))) + abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))));
|
|
Dphi_ss(abs(squeeze(freqresp(W2*H2, freqs, 'Hz'))) + abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))) > 1) = 360;
|
|
|
|
figure;
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plotMagUncertainty(W1, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
|
|
plotMagUncertainty(W2, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
|
|
plot(freqs, 1 + abs(squeeze(freqresp(W2*H2, freqs, 'Hz')))+abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))), 'k-', ...
|
|
'DisplayName', '$1 + W_1 \Delta_1 + W_2 \Delta_2$')
|
|
plot(freqs, max(1 - abs(squeeze(freqresp(W2*H2, freqs, 'Hz')))-abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))), 0.001), 'k-', ...
|
|
'HandleVisibility', 'off');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylabel('Magnitude');
|
|
ylim([1e-2, 1e1]);
|
|
legend('location', 'southeast');
|
|
hold off;
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plotPhaseUncertainty(W1, freqs, 'color_i', 1);
|
|
plotPhaseUncertainty(W2, freqs, 'color_i', 2);
|
|
plot(freqs, Dphi_ss, 'k-');
|
|
plot(freqs, -Dphi_ss, 'k-');
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/super_sensor_dynamical_uncertainty_H2.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:super_sensor_dynamical_uncertainty_H2
|
|
#+caption: Super sensor dynamical uncertainty when using the $\mathcal{H}_2$ Synthesis
|
|
#+RESULTS:
|
|
[[file:figs/super_sensor_dynamical_uncertainty_H2.png]]
|
|
|
|
* Robust Sensor Fusion: $\mathcal{H}_\infty$ Synthesis
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/comp_filter_robustness.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:comp_filter_robustness>>
|
|
|
|
** Introduction :ignore:
|
|
We initially considered perfectly known sensor dynamics so that it can be perfectly inverted.
|
|
|
|
We now take into account the fact that the sensor dynamics is only partially known.
|
|
To do so, we model the uncertainty that we have on the sensor dynamics by multiplicative input uncertainty as shown in Figure [[fig:sensor_fusion_arch_uncertainty]].
|
|
|
|
#+name: fig:sensor_fusion_arch_uncertainty
|
|
#+caption: Sensor fusion architecture with sensor dynamics uncertainty
|
|
[[file:figs-tikz/sensor_fusion_arch_uncertainty.png]]
|
|
|
|
As explained in Section [[sec:sensor_uncertainty]], at each frequency $\omega$, the dynamical uncertainty of the super sensor can be represented in the complex plane by a circle with a radius equals to $|H_1(j\omega) W_1(j\omega)| + |H_2(j\omega) W_2(j\omega)|$ and centered on 1.
|
|
|
|
In order to specify a wanted upper bound on the dynamical uncertainty, a weight $W_u(s)$ is used where $1/|W_u(j\omega)|$ represents the maximum allowed radius of the uncertainty circle corresponding to the super sensor dynamics at a frequency $\omega$ eqref:eq:upper_bound_uncertainty.
|
|
|
|
\begin{align}
|
|
& |H_1(j\omega) W_1(j\omega)| + |H_2(j\omega) W_2(j\omega)| < \frac{1}{|W_u(j\omega)|}, \quad \forall \omega \label{eq:upper_bound_uncertainty} \\
|
|
\Leftrightarrow & |H_1(j\omega) W_1(j\omega) W_u(j\omega)| + |H_2(j\omega) W_2(j\omega) W_u(j\omega)| < 1, \quad \forall\omega \label{eq:upper_bound_uncertainty_bis}
|
|
\end{align}
|
|
|
|
|
|
$|W_u(j\omega)|$ is also linked to the gain uncertainty $\Delta G$ eqref:eq:gain_uncertainty_bound and phase uncertainty $\Delta\phi$ eqref:eq:phase_uncertainty_bound of the super sensor.
|
|
\begin{align}
|
|
\Delta G (\omega) &\le \frac{1}{|W_u(j\omega)|}, \quad \forall\omega \label{eq:gain_uncertainty_bound} \\
|
|
\Delta \phi (\omega) &\le \arcsin\left(\frac{1}{|W_u(j\omega)|}\right), \quad \forall\omega \label{eq:phase_uncertainty_bound}
|
|
\end{align}
|
|
|
|
The choice of $W_u$ is presented in Section [[sec:weight_uncertainty]].
|
|
|
|
|
|
Condition eqref:eq:upper_bound_uncertainty_bis can almost be represented by eqref:eq:hinf_norm_uncertainty (within a factor $\sqrt{2}$).
|
|
\begin{equation}
|
|
\left\| \begin{matrix} H_1(s) W_1(s) W_u(s) \\ H_2(s) W_2(s) W_u(s) \end{matrix} \right\|_\infty < 1 \label{eq:hinf_norm_uncertainty}
|
|
\end{equation}
|
|
|
|
|
|
|
|
The objective is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ (complementary property) and such that eqref:eq:hinf_norm_uncertainty is verified (bounded dynamical uncertainty).
|
|
|
|
This is done using the $\mathcal{H}_\infty$ synthesis in Section [[sec:Hinfinity_synthesis]].
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
addpath('src');
|
|
load('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');
|
|
#+end_src
|
|
|
|
** Weighting Function used to bound the super sensor uncertainty
|
|
<<sec:weight_uncertainty>>
|
|
|
|
$W_u(s)$ is defined such that the super sensor phase uncertainty is less than 10 degrees below 100Hz eqref:eq:phase_uncertainy_bound_low_freq and is less than 180 degrees below 400Hz eqref:eq:phase_uncertainty_max.
|
|
|
|
\begin{align}
|
|
\frac{1}{|W_u(j\omega)|} &< \sin\left(10 \frac{\pi}{180}\right), \quad \omega < 100\,\text{Hz} \label{eq:phase_uncertainy_bound_low_freq} \\
|
|
\frac{1}{|W_u(j 2 \pi 400)|} &< 1 \label{eq:phase_uncertainty_max}
|
|
\end{align}
|
|
|
|
The uncertainty bounds of the two individual sensor as well as the wanted maximum uncertainty bounds of the super sensor are shown in Figure [[fig:weight_uncertainty_bounds_Wu]].
|
|
|
|
#+begin_src matlab
|
|
Dphi = 10; % [deg]
|
|
|
|
Wu = createWeight('n', 2, 'w0', 2*pi*4e2, 'G0', 1/sin(Dphi*pi/180), 'G1', 1/4, 'Gc', 1);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
% Wu is saved for further use
|
|
save('./mat/Wu.mat', 'Wu');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))));
|
|
Dphi_Wu(abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))) > 1) = 360;
|
|
|
|
figure;
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plotMagUncertainty(W1, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
|
|
plotMagUncertainty(W2, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
|
|
plot(freqs, 1 + abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))), 'k--', ...
|
|
'DisplayName', '$1 + W_u^{-1} \Delta$')
|
|
plot(freqs, 1 - abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))), 'k--', ...
|
|
'HandleVisibility', 'off')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylabel('Magnitude');
|
|
ylim([1e-2, 1e1]);
|
|
legend('location', 'southeast');
|
|
hold off;
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plotPhaseUncertainty(W1, freqs, 'color_i', 1);
|
|
plotPhaseUncertainty(W2, freqs, 'color_i', 2);
|
|
plot(freqs, Dphi_Wu, 'k--');
|
|
plot(freqs, -Dphi_Wu, 'k--');
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/weight_uncertainty_bounds_Wu.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:weight_uncertainty_bounds_Wu
|
|
#+caption: Uncertainty region of the two sensors as well as the wanted maximum uncertainty of the super sensor (dashed lines)
|
|
#+RESULTS:
|
|
[[file:figs/weight_uncertainty_bounds_Wu.png]]
|
|
|
|
** $\mathcal{H}_\infty$ Synthesis
|
|
<<sec:Hinfinity_synthesis>>
|
|
|
|
The generalized plant $P_{\mathcal{H}_\infty}$ used for the $\mathcal{H}_\infty$ Synthesis of the complementary filters is shown in Figure [[fig:h_infinity_robust_fusion]] and is described by Equation eqref:eq:Hinf_generalized_plant.
|
|
|
|
#+name: fig:h_infinity_robust_fusion
|
|
#+caption: Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters
|
|
[[file:figs-tikz/h_infinity_robust_fusion.png]]
|
|
|
|
\begin{equation} \label{eq:Hinf_generalized_plant}
|
|
\begin{pmatrix}
|
|
z_1 \\ z_2 \\ v
|
|
\end{pmatrix} = \underbrace{\begin{bmatrix}
|
|
W_u W_1 & -W_u W_1 \\
|
|
0 & W_u W_2 \\
|
|
1 & 0
|
|
\end{bmatrix}}_{P_{\mathcal{H}_\infty}} \begin{pmatrix}
|
|
w \\ u
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
|
|
The generalized plant is defined below.
|
|
#+begin_src matlab
|
|
P = [Wu*W1 -Wu*W1;
|
|
0 Wu*W2;
|
|
1 0];
|
|
#+end_src
|
|
|
|
And the $\mathcal{H}_\infty$ synthesis is performed using the =hinfsyn= command.
|
|
#+begin_src matlab :results output replace :exports both
|
|
H2 = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'DISPLAY', 'on');
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
Test bounds: 0.7071 <= gamma <= 1.291
|
|
|
|
gamma X>=0 Y>=0 rho(XY)<1 p/f
|
|
9.554e-01 0.0e+00 0.0e+00 3.529e-16 p
|
|
8.219e-01 0.0e+00 0.0e+00 5.204e-16 p
|
|
7.624e-01 3.8e-17 0.0e+00 1.955e-15 p
|
|
7.342e-01 0.0e+00 0.0e+00 5.612e-16 p
|
|
7.205e-01 0.0e+00 0.0e+00 7.184e-16 p
|
|
7.138e-01 0.0e+00 0.0e+00 0.000e+00 p
|
|
7.104e-01 4.1e-16 0.0e+00 6.749e-15 p
|
|
7.088e-01 0.0e+00 0.0e+00 2.794e-15 p
|
|
7.079e-01 0.0e+00 0.0e+00 6.503e-16 p
|
|
7.075e-01 0.0e+00 0.0e+00 4.302e-15 p
|
|
|
|
Best performance (actual): 0.7071
|
|
#+end_example
|
|
|
|
The $\mathcal{H}_\infty$ is successful as the $\mathcal{H}_\infty$ norm of the "closed loop" transfer function from $(w)$ to $(z_1,\ z_2)$ is less than one.
|
|
|
|
$H_1(s)$ is then defined as the complementary of $H_2(s)$.
|
|
#+begin_src matlab
|
|
H1 = 1 - H2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
% Complementary filters are saved for further analysis
|
|
save('./mat/Hinf_filters.mat', 'H2', 'H1');
|
|
#+end_src
|
|
|
|
The obtained complementary filters as well as the wanted upper bounds are shown in Figure [[fig:hinf_comp_filters]].
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plot(freqs, 1./abs(squeeze(freqresp(Wu*W1, freqs, 'Hz'))), '--', 'DisplayName', '$1/|W_uW_1|$');
|
|
plot(freqs, 1./abs(squeeze(freqresp(Wu*W2, freqs, 'Hz'))), '--', 'DisplayName', '$1/|W_uW_2|$');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
|
|
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Magnitude');
|
|
set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
|
|
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
|
|
hold off;
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
set(gca, 'XScale', 'log');
|
|
yticks([-360:90:360]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/hinf_comp_filters.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:hinf_comp_filters
|
|
#+caption: Obtained complementary filters using the $\mathcal{H}_\infty$ Synthesis
|
|
#+RESULTS:
|
|
[[file:figs/hinf_comp_filters.png]]
|
|
|
|
** Super sensor uncertainty
|
|
The super sensor dynamical uncertainty is displayed in Figure [[fig:super_sensor_dynamical_uncertainty_Hinf]].
|
|
It is confirmed that the super sensor dynamical uncertainty is less than the maximum allowed uncertainty defined by the norm of $W_u(s)$.
|
|
|
|
The $\mathcal{H}_\infty$ synthesis thus allows to design filters such that the super sensor has specified bounded uncertainty.
|
|
|
|
#+begin_src matlab :exports none
|
|
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))));
|
|
Dphi_Wu(abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))) > 1) = 360;
|
|
|
|
Dphi_ss = 180/pi*asin(abs(squeeze(freqresp(W2*H2, freqs, 'Hz'))) + abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))));
|
|
Dphi_ss(abs(squeeze(freqresp(W2*H2, freqs, 'Hz'))) + abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))) > 1) = 360;
|
|
|
|
figure;
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plotMagUncertainty(W1, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
|
|
plotMagUncertainty(W2, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
|
|
plot(freqs, 1 + abs(squeeze(freqresp(W2*H2, freqs, 'Hz')))+abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))), 'k-', ...
|
|
'DisplayName', '$1 + W_1 \Delta_1 + W_2 \Delta_2$')
|
|
plot(freqs, max(1 - abs(squeeze(freqresp(W2*H2, freqs, 'Hz')))-abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))), 0.001), 'k-', ...
|
|
'HandleVisibility', 'off');
|
|
plot(freqs, 1 + abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))), 'k--', ...
|
|
'DisplayName', '$1 + W_u^{-1}\Delta$')
|
|
plot(freqs, 1 - abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))), 'k--', ...
|
|
'HandleVisibility', 'off')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylabel('Magnitude');
|
|
ylim([1e-2, 1e1]);
|
|
legend('location', 'southeast');
|
|
hold off;
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plotPhaseUncertainty(W1, freqs, 'color_i', 1);
|
|
plotPhaseUncertainty(W2, freqs, 'color_i', 2);
|
|
plot(freqs, Dphi_ss, 'k-');
|
|
plot(freqs, -Dphi_ss, 'k-');
|
|
plot(freqs, Dphi_Wu, 'k--');
|
|
plot(freqs, -Dphi_Wu, 'k--');
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/super_sensor_dynamical_uncertainty_Hinf.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:super_sensor_dynamical_uncertainty_Hinf
|
|
#+caption: Super sensor dynamical uncertainty (solid curve) when using the $\mathcal{H}_\infty$ Synthesis
|
|
#+RESULTS:
|
|
[[file:figs/super_sensor_dynamical_uncertainty_Hinf.png]]
|
|
|
|
** Super sensor noise
|
|
We now compute the obtain Power Spectral Density of the super sensor's noise (Figure [[fig:psd_sensors_hinf_synthesis]]).
|
|
|
|
The obtained RMS of the super sensor noise in the $\mathcal{H}_2$ and $\mathcal{H}_\infty$ case are shown in Table [[tab:rms_noise_comp_H2_Hinf]].
|
|
As expected, the super sensor obtained from the $\mathcal{H}_\infty$ synthesis is much noisier than the super sensor obtained from the $\mathcal{H}_2$ synthesis.
|
|
|
|
#+begin_src matlab
|
|
PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
|
|
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
|
|
PSD_Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
|
|
abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
H2_filters = load('./mat/H2_filters.mat', 'H2', 'H1');
|
|
|
|
PSD_H2 = abs(squeeze(freqresp(N1*H2_filters.H1, freqs, 'Hz'))).^2 + ...
|
|
abs(squeeze(freqresp(N2*H2_filters.H2, freqs, 'Hz'))).^2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{n_1}$');
|
|
plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{n_2}$');
|
|
plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{n_{\mathcal{H}_2}}$');
|
|
plot(freqs, PSD_Hinf, 'k--', 'DisplayName', '$\Phi_{n_{\mathcal{H}_\infty}}$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Power Spectral Density $\left[ \frac{(m/s)^2}{Hz} \right]$');
|
|
hold off;
|
|
xlim([freqs(1), freqs(end)]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sensors_hinf_synthesis.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sensors_hinf_synthesis
|
|
#+caption: Power Spectral Density of the estimated $\hat{x}$ using the two sensors alone and using the
|
|
#+RESULTS:
|
|
[[file:figs/psd_sensors_hinf_synthesis.png]]
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
|
data2orgtable([sqrt(trapz(freqs, PSD_H2)), sqrt(trapz(freqs, PSD_Hinf))]', {'Optimal: $\mathcal{H}_2$', 'Robust: $\mathcal{H}_\infty$'}, {'RMS [m/s]'}, ' %.1e ');
|
|
#+end_src
|
|
|
|
#+name: tab:rms_noise_comp_H2_Hinf
|
|
#+caption: Comparison of the obtained RMS noise of the super sensor
|
|
#+attr_latex: :environment tabular :align cc
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
#+RESULTS:
|
|
| | RMS [m/s] |
|
|
|------------------------------+-----------|
|
|
| Optimal: $\mathcal{H}_2$ | 0.0027 |
|
|
| Robust: $\mathcal{H}_\infty$ | 0.041 |
|
|
|
|
** Conclusion
|
|
Using the $\mathcal{H}_\infty$ synthesis, the dynamical uncertainty of the super sensor can be bounded to acceptable values.
|
|
|
|
However, the RMS of the super sensor noise is not optimized as it was the case with the $\mathcal{H}_2$ synthesis
|
|
|
|
* Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/mixed_synthesis_sensor_fusion.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:mixed_synthesis_sensor_fusion>>
|
|
** Introduction :ignore:
|
|
|
|
The (optima) $\mathcal{H}_2$ synthesis and the (robust) $\mathcal{H}_\infty$ synthesis are now combined to form an Optimal and Robust synthesis of complementary filters for sensor fusion.
|
|
|
|
The sensor fusion architecture is shown in Figure [[fig:sensor_fusion_arch_full]] ($\hat{G}_i$ are omitted for space reasons).
|
|
|
|
#+name: fig:sensor_fusion_arch_full
|
|
#+caption: Sensor fusion architecture with sensor dynamics uncertainty
|
|
[[file:figs-tikz/sensor_fusion_arch_full.png]]
|
|
|
|
The goal is to design complementary filters such that:
|
|
- the maximum uncertainty of the super sensor is bounded to acceptable values (defined by $W_u(s)$)
|
|
- the RMS value of the super sensor noise is minimized
|
|
|
|
To do so, we can use the Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis presented in Section [[sec:H2_Hinf_synthesis]].
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');
|
|
load('./mat/Wu.mat', 'Wu');
|
|
#+end_src
|
|
|
|
** Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis
|
|
<<sec:H2_Hinf_synthesis>>
|
|
|
|
The synthesis architecture that is used here is shown in Figure [[fig:mixed_h2_hinf_synthesis]].
|
|
|
|
The filter $H_2(s)$ is synthesized such that it:
|
|
- keeps the $\mathcal{H}_\infty$ norm of the transfer function from $w$ to $z_{\mathcal{H}_\infty}$ bellow some specified value
|
|
- minimizes the $\mathcal{H}_2$ norm of the transfer function from $w$ to $z_{\mathcal{H}_2}$
|
|
|
|
#+name: fig:mixed_h2_hinf_synthesis
|
|
#+caption: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
|
|
[[file:figs-tikz/mixed_h2_hinf_synthesis.png]]
|
|
|
|
Let's see that
|
|
with $H_1(s)= 1 - H_2(s)$
|
|
\begin{align}
|
|
\left\| \frac{z_\infty}{w} \right\|_\infty &= \left\| \begin{matrix}H_1(s) W_1(s) W_u(s)\\ H_2(s) W_2(s) W_u(s)\end{matrix} \right\|_\infty \\
|
|
\left\| \frac{z_2}{w} \right\|_2 &= \left\| \begin{matrix}H_1(s) N_1(s) \\ H_2(s) N_2(s)\end{matrix} \right\|_2 = \sigma_n
|
|
\end{align}
|
|
|
|
The generalized plant $P_{\mathcal{H}_2/\mathcal{H}_\infty}$ is defined below
|
|
#+begin_src matlab
|
|
W1u = ss(W2*Wu); W2u = ss(W1*Wu); % Weight on the uncertainty
|
|
W1n = ss(N2); W2n = ss(N1); % Weight on the noise
|
|
|
|
P = [Wu*W1 -Wu*W1;
|
|
0 Wu*W2;
|
|
N1 -N1;
|
|
0 N2;
|
|
1 0];
|
|
#+end_src
|
|
|
|
And the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is performed.
|
|
#+begin_src matlab
|
|
[H2, ~] = h2hinfsyn(ss(P), 1, 1, 2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 1e-3, 'DISPLAY', 'on');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
H1 = 1 - H2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
% The obtained filters are saved for further analysis
|
|
save('./mat/H2_Hinf_filters.mat', 'H2', 'H1');
|
|
#+end_src
|
|
|
|
The obtained complementary filters are shown in Figure [[fig:htwo_hinf_comp_filters]].
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plot(freqs, 1./abs(squeeze(freqresp(Wu*W1, freqs, 'Hz'))), '--', 'DisplayName', '$1/|W_uW_1|$');
|
|
plot(freqs, 1./abs(squeeze(freqresp(Wu*W2, freqs, 'Hz'))), '--', 'DisplayName', '$1/|W_uW_2|$');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
|
|
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Magnitude');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 2]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
|
|
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
|
|
hold off;
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
set(gca, 'XScale', 'log');
|
|
yticks([-360:90:360]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/htwo_hinf_comp_filters.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:htwo_hinf_comp_filters
|
|
#+caption: Obtained complementary filters after mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis
|
|
#+RESULTS:
|
|
[[file:figs/htwo_hinf_comp_filters.png]]
|
|
|
|
** Obtained Super Sensor's noise
|
|
The Power Spectral Density of the super sensor's noise is shown in Figure [[fig:psd_sensors_htwo_hinf_synthesis]].
|
|
|
|
A time domain simulation is shown in Figure [[fig:super_sensor_time_domain_h2_hinf]].
|
|
|
|
The RMS values of the super sensor noise for the presented three synthesis are listed in Table [[tab:rms_noise_comp]].
|
|
|
|
#+begin_src matlab
|
|
PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
|
|
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
|
|
PSD_H2Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
|
|
abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
H2_filters = load('./mat/H2_filters.mat', 'H2', 'H1');
|
|
|
|
PSD_H2 = abs(squeeze(freqresp(N1*H2_filters.H1, freqs, 'Hz'))).^2 + ...
|
|
abs(squeeze(freqresp(N2*H2_filters.H2, freqs, 'Hz'))).^2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
Hinf_filters = load('./mat/Hinf_filters.mat', 'H2', 'H1');
|
|
|
|
PSD_Hinf = abs(squeeze(freqresp(N1*Hinf_filters.H1, freqs, 'Hz'))).^2 + ...
|
|
abs(squeeze(freqresp(N2*Hinf_filters.H2, freqs, 'Hz'))).^2;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{n_1}$');
|
|
plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{n_2}$');
|
|
plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{n_{\mathcal{H}_2}}$');
|
|
plot(freqs, PSD_Hinf, 'k--', 'DisplayName', '$\Phi_{n_{\mathcal{H}_\infty}}$');
|
|
plot(freqs, PSD_H2Hinf, 'k-.', 'DisplayName', '$\Phi_{n_{\mathcal{H}_2/\mathcal{H}_\infty}}$');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Power Spectral Density [$(m/s)^2/Hz$]');
|
|
hold off;
|
|
xlim([freqs(1), freqs(end)]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sensors_htwo_hinf_synthesis.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sensors_htwo_hinf_synthesis
|
|
#+CAPTION: Power Spectral Density of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis
|
|
#+RESULTS:
|
|
[[file:figs/psd_sensors_htwo_hinf_synthesis.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
Fs = 1e4; % Sampling Frequency [Hz]
|
|
Ts = 1/Fs; % Sampling Time [s]
|
|
|
|
t = 0:Ts:2; % Time Vector [s]
|
|
|
|
v = 0.1*sin((10*t).*t)'; % Velocity measured [m/s]
|
|
|
|
% Generate noises in velocity corresponding to sensor 1 and 2:
|
|
n1 = lsim(N1, sqrt(Fs/2)*randn(length(t), 1), t);
|
|
n2 = lsim(N2, sqrt(Fs/2)*randn(length(t), 1), t);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(t, v + n2, 'DisplayName', '$\hat{x}_2$');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(t, v + n1, 'DisplayName', '$\hat{x}_1$');
|
|
set(gca,'ColorOrderIndex',3)
|
|
plot(t, v + (lsim(H1, n1, t) + lsim(H2, n2, t)), 'DisplayName', '$\hat{x}$');
|
|
plot(t, v, 'k--', 'DisplayName', '$x$');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Velocity [m/s]');
|
|
legend('location', 'southwest');
|
|
ylim([-0.3, 0.3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/super_sensor_time_domain_h2_hinf.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:super_sensor_time_domain_h2_hinf
|
|
#+caption: Noise of individual sensors and noise of the super sensor
|
|
#+RESULTS:
|
|
[[file:figs/super_sensor_time_domain_h2_hinf.png]]
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
|
data2orgtable([sqrt(trapz(freqs, PSD_H2)), sqrt(trapz(freqs, PSD_Hinf)), sqrt(trapz(freqs, PSD_H2Hinf))]', ...
|
|
{'Optimal: $\mathcal{H}_2$', 'Robust: $\mathcal{H}_\infty$', 'Mixed: $\mathcal{H}_2/\mathcal{H}_\infty$'}, ...
|
|
{'RMS [m/s]'}, ' %.1e ');
|
|
#+end_src
|
|
|
|
#+name: tab:rms_noise_comp
|
|
#+caption: Comparison of the obtained RMS noise of the super sensor
|
|
#+attr_latex: :environment tabular :align cc
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
#+RESULTS:
|
|
| | RMS [m/s] |
|
|
|-------------------------------------------+-----------|
|
|
| Optimal: $\mathcal{H}_2$ | 0.0027 |
|
|
| Robust: $\mathcal{H}_\infty$ | 0.041 |
|
|
| Mixed: $\mathcal{H}_2/\mathcal{H}_\infty$ | 0.0098 |
|
|
|
|
** Obtained Super Sensor's Uncertainty
|
|
The uncertainty on the super sensor's dynamics is shown in Figure [[fig:super_sensor_dynamical_uncertainty_Htwo_Hinf]].
|
|
|
|
#+begin_src matlab :exports none
|
|
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))));
|
|
Dphi_Wu(abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))) > 1) = 360;
|
|
|
|
Dphi_ss = 180/pi*asin(abs(squeeze(freqresp(W2*H2, freqs, 'Hz'))) + abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))));
|
|
Dphi_ss(abs(squeeze(freqresp(W2*H2, freqs, 'Hz'))) + abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))) > 1) = 360;
|
|
|
|
figure;
|
|
% Magnitude
|
|
ax1 = subplot(2,1,1);
|
|
hold on;
|
|
plotMagUncertainty(W1, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
|
|
plotMagUncertainty(W2, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
|
|
plot(freqs, 1 + abs(squeeze(freqresp(W2*H2, freqs, 'Hz')))+abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))), 'k-', ...
|
|
'DisplayName', '$1 + W_1 \Delta_1 + W_2 \Delta_2$')
|
|
plot(freqs, max(1 - abs(squeeze(freqresp(W2*H2, freqs, 'Hz')))-abs(squeeze(freqresp(W1*H1, freqs, 'Hz'))), 0.001), 'k-', ...
|
|
'HandleVisibility', 'off');
|
|
plot(freqs, 1 + abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))), 'k--', ...
|
|
'DisplayName', '$1 + W_u^{-1}\Delta$')
|
|
plot(freqs, 1 - abs(squeeze(freqresp(inv(Wu), freqs, 'Hz'))), 'k--', ...
|
|
'HandleVisibility', 'off')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]);
|
|
ylabel('Magnitude');
|
|
ylim([1e-2, 1e1]);
|
|
legend('location', 'southeast');
|
|
hold off;
|
|
|
|
% Phase
|
|
ax2 = subplot(2,1,2);
|
|
hold on;
|
|
plotPhaseUncertainty(W1, freqs, 'color_i', 1);
|
|
plotPhaseUncertainty(W2, freqs, 'color_i', 2);
|
|
plot(freqs, Dphi_ss, 'k-');
|
|
plot(freqs, -Dphi_ss, 'k-');
|
|
plot(freqs, Dphi_Wu, 'k--');
|
|
plot(freqs, -Dphi_Wu, 'k--');
|
|
set(gca,'xscale','log');
|
|
yticks(-180:90:180);
|
|
ylim([-180 180]);
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/super_sensor_dynamical_uncertainty_Htwo_Hinf.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:super_sensor_dynamical_uncertainty_Htwo_Hinf
|
|
#+caption: Super sensor dynamical uncertainty (solid curve) when using the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
|
|
#+RESULTS:
|
|
[[file:figs/super_sensor_dynamical_uncertainty_Htwo_Hinf.png]]
|
|
|
|
** Conclusion
|
|
The mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis of the complementary filters allows to:
|
|
- limit the dynamical uncertainty of the super sensor
|
|
- minimize the RMS value of the estimation
|
|
|
|
* Matlab Functions
|
|
<<sec:matlab_functions>>
|
|
** =createWeight=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle src/createWeight.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:createWeight>>
|
|
|
|
This Matlab function is accessible [[file:src/createWeight.m][here]].
|
|
|
|
#+begin_src matlab
|
|
function [W] = createWeight(args)
|
|
% createWeight -
|
|
%
|
|
% Syntax: [in_data] = createWeight(in_data)
|
|
%
|
|
% Inputs:
|
|
% - n - Weight Order
|
|
% - G0 - Low frequency Gain
|
|
% - G1 - High frequency Gain
|
|
% - Gc - Gain of W at frequency w0
|
|
% - w0 - Frequency at which |W(j w0)| = Gc
|
|
%
|
|
% Outputs:
|
|
% - W - Generated Weight
|
|
|
|
arguments
|
|
args.n (1,1) double {mustBeInteger, mustBePositive} = 1
|
|
args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
|
args.G1 (1,1) double {mustBeNumeric, mustBePositive} = 10
|
|
args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
end
|
|
|
|
mustBeBetween(args.G0, args.Gc, args.G1);
|
|
|
|
s = tf('s');
|
|
|
|
W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (args.G0/args.Gc)^(1/args.n))/((1/args.G1)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (1/args.Gc)^(1/args.n)))^args.n;
|
|
|
|
end
|
|
|
|
% Custom validation function
|
|
function mustBeBetween(a,b,c)
|
|
if ~((a > b && b > c) || (c > b && b > a))
|
|
eid = 'createWeight:inputError';
|
|
msg = 'Gc should be between G0 and G1.';
|
|
throwAsCaller(MException(eid,msg))
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** =plotMagUncertainty=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle src/plotMagUncertainty.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:plotMagUncertainty>>
|
|
|
|
This Matlab function is accessible [[file:src/plotMagUncertainty.m][here]].
|
|
|
|
#+begin_src matlab
|
|
function [p] = plotMagUncertainty(W, freqs, args)
|
|
% plotMagUncertainty -
|
|
%
|
|
% Syntax: [p] = plotMagUncertainty(W, freqs, args)
|
|
%
|
|
% Inputs:
|
|
% - W - Multiplicative Uncertainty Weight
|
|
% - freqs - Frequency Vector [Hz]
|
|
% - args - Optional Arguments:
|
|
% - G
|
|
% - color_i
|
|
% - opacity
|
|
%
|
|
% Outputs:
|
|
% - p - Plot Handle
|
|
|
|
arguments
|
|
W
|
|
freqs double {mustBeNumeric, mustBeNonnegative}
|
|
args.G = tf(1)
|
|
args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
|
|
args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
|
|
args.DisplayName char = ''
|
|
end
|
|
|
|
% Get defaults colors
|
|
colors = get(groot, 'defaultAxesColorOrder');
|
|
|
|
p = patch([freqs flip(freqs)], ...
|
|
[abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
|
|
flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
|
|
'DisplayName', args.DisplayName);
|
|
|
|
p.FaceColor = colors(args.color_i, :);
|
|
p.EdgeColor = 'none';
|
|
p.FaceAlpha = args.opacity;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
** =plotPhaseUncertainty=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle src/plotPhaseUncertainty.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:plotPhaseUncertainty>>
|
|
|
|
This Matlab function is accessible [[file:src/plotPhaseUncertainty.m][here]].
|
|
|
|
#+begin_src matlab
|
|
function [p] = plotPhaseUncertainty(W, freqs, args)
|
|
% plotPhaseUncertainty -
|
|
%
|
|
% Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
|
|
%
|
|
% Inputs:
|
|
% - W - Multiplicative Uncertainty Weight
|
|
% - freqs - Frequency Vector [Hz]
|
|
% - args - Optional Arguments:
|
|
% - G
|
|
% - color_i
|
|
% - opacity
|
|
%
|
|
% Outputs:
|
|
% - p - Plot Handle
|
|
|
|
arguments
|
|
W
|
|
freqs double {mustBeNumeric, mustBeNonnegative}
|
|
args.G = tf(1)
|
|
args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
|
|
args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
|
|
args.DisplayName char = ''
|
|
end
|
|
|
|
% Get defaults colors
|
|
colors = get(groot, 'defaultAxesColorOrder');
|
|
|
|
% Compute Phase Uncertainty
|
|
Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
|
|
Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) > 1) = 360;
|
|
|
|
% Compute Plant Phase
|
|
G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));
|
|
|
|
p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
|
|
'DisplayName', args.DisplayName);
|
|
|
|
p.FaceColor = colors(args.color_i, :);
|
|
p.EdgeColor = 'none';
|
|
p.FaceAlpha = args.opacity;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
* Bibliography :ignore:
|
|
bibliographystyle:unsrt
|
|
bibliography:ref.bib
|
|
|
|
#+latex: \printbibliography
|