dehaeze20_optim_robus_compl.../paper/paper.org

12 KiB

Optimal and Robust Sensor Fusion

\bibliographystyle{IEEEtran}

Abstract   ignore

Abstract text to be done

Keywords   ignore

Complementary Filters, Sensor Fusion, H-Infinity Synthesis

Introduction

<<sec:introduction>>

  • Section ref:sec:optimal_fusion
  • Section ref:sec:robust_fusion
  • Section ref:sec:optimal_robust_fusion
  • Section ref:sec:experimental_validation

Optimal Super Sensor Noise: $\mathcal{H}_2$ Synthesis

<<sec:optimal_fusion>>

Sensor Model

Let's consider a sensor measuring a physical quantity $x$ (Figure fig:sensor_model). The sensor has an internal dynamics which is here modelled with a Linear Time Invariant (LTI) system transfer function $G_i(s)$.

The noise of sensor can be described by the Power Spectral Density (PSD) $\Phi_{n_i}(\omega)$.

This is approximated by shaping a white noise with unitary PSD $\tilde{n}_i$ eqref:eq:unitary_sensor_noise_psd with a LTI transfer function $N_i(s)$:

\begin{equation} \begin{aligned} \Phi_{n_i}(\omega) &= \left| N_i(j\omega) \right|^2 \Phi_{\tilde{n}_i}(\omega) \\ &= \left| N_i(j\omega) \right|^2 \end{aligned} \end{equation} \begin{equation} \Phi_{\tilde{n}_i}(\omega) = 1 \end{equation}

The output of the sensor $v_i$:

\begin{equation} v_i = \left( G_i \right) x + \left( G_i N_i \right) \tilde{n}_i \end{equation}

In order to obtain an estimate $\hat{x}_i$ of $x$, a model $\hat{G}_i$ of the (true) sensor dynamics $G_i$ is inverted and applied at the output (Figure fig:sensor_model):

\begin{equation} \hat{x}_i = \left( \hat{G}_i^{-1} G_i \right) x + \left( \hat{G}_i^{-1} G_i N_i \right) \tilde{n}_i \end{equation}

/tdehaeze/dehaeze20_optim_robus_compl_filte/src/commit/333f814d47dfbf1e6a6e718b8a21fb4dd80ec84f/paper/figs/sensor_model.pdf

Sensor Fusion Architecture

Let's now consider two sensors measuring the same physical quantity $x$ but with different dynamics $(G_1, G_2)$ and noise characteristics $(N_1, N_2)$ (Figure fig:sensor_fusion_noise_arch).

The noise sources $\tilde{n}_1$ and $\tilde{n}_2$ are considered to be uncorrelated.

/tdehaeze/dehaeze20_optim_robus_compl_filte/src/commit/333f814d47dfbf1e6a6e718b8a21fb4dd80ec84f/paper/figs/sensor_fusion_noise_arch.pdf

The output of both sensors $(v1,v2)$ are then passed through the inverse of the sensor model to obtained two estimates $(\hat{x}_1, \hat{x}_2)$ of $x$. These two estimates are then filtered out by two filters $H_1$ and $H_2$ and summed to gives the super sensor estimate $\hat{x}$.

\begin{equation} \begin{split} \hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\ &+ \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \end{split} \end{equation}

Suppose the sensor dynamical model $\hat{G}_i$ is perfect:

\begin{equation} \hat{G}_i = G_i \end{equation}

We considered here complementary filters:

\begin{equation} H_1(s) + H_2(s) = 1 \end{equation}

In such case, the super sensor estimate $\hat{x}$ is equal to $x$ plus the noise of the individual sensors filtered out by the complementary filters:

\begin{equation} \hat{x} = x + \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 \end{equation}

Super Sensor Noise

Let's note $n$ the super sensor noise.

\begin{equation} n = \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 \end{equation}

As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow:

\begin{equation} \Phi_n(\omega) = \left| H_1 N_1 \right|^2 + \left| H_2 N_2 \right|^2 \end{equation}

It is clear that the PSD of the super sensor depends on the norm of the complementary filters.

$\mathcal{H}_2$ Synthesis of Complementary Filters

The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise sources $\tilde{n}_1$ and $\tilde{n}_2$ has the smallest possible effect on the noise $n$ of the estimation $\hat{x}$.

And the goal is the minimize the Root Mean Square (RMS) value of $n$:

\begin{equation} \sigma_{n} = \sqrt{\int_0^\infty \Phi_{n}(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \end{equation}

Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\sigma_n$ is minimized.

This can be cast into an $\mathcal{H}_2$ synthesis problem by considering the following generalized plant (also represented in Figure fig:h_two_optimal_fusion):

\begin{equation} \begin{pmatrix} z_1 \\ z_2 \\ v \end{pmatrix} = \underbrace{\begin{bmatrix} N_1 & N_1 \\ 0 & N_2 \\ 1 & 0 \end{bmatrix}}_{P_{\mathcal{H}_2}} \begin{pmatrix} w \\ u \end{pmatrix} \end{equation}

Applying the $\mathcal{H}_2$ synthesis on $P_{\mathcal{H}_2}$ will generate a filter $H_2(s)$ such that the $\mathcal{H}_2$ norm from $w$ to $(z_1,z_2)$ is minimized:

\begin{equation} \left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_2 = \left\| \begin{matrix} N_1 (1 - H_2) \\ N_2 H_2 \end{matrix} \right\|_2 \end{equation}

The $\mathcal{H}_2$ norm of Eq. eqref:eq:H2_norm is equals to $\sigma_n$ by defining $H_1(s)$ to be the complementary filter of $H_2(s)$:

\begin{equation} H_1(s) = 1 - H_2(s) \end{equation}

We then have that the $\mathcal{H}_2$ synthesis applied on $P_{\mathcal{H}_2}$ generates two complementary filters $H_1(s)$ and $H_2(s)$ such that the RMS value of super sensor noise is minimized.

/tdehaeze/dehaeze20_optim_robus_compl_filte/src/commit/333f814d47dfbf1e6a6e718b8a21fb4dd80ec84f/paper/figs/h_two_optimal_fusion.pdf

Example

Robustness Problem

Robust Sensor Fusion: $\mathcal{H}_\infty$ Synthesis

<<sec:robust_fusion>>

Representation of Sensor Dynamical Uncertainty

Suppose that the sensor dynamics $G_i(s)$ can be modelled by a nominal d

\begin{equation} G_i(s) = \hat{G}_i(s) \left( 1 + w_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \end{equation}

Sensor Fusion Architecture

\begin{equation} \begin{split} \hat{x} = \Big( {} & H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + w_1 \Delta_1) \\ + & H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + w_2 \Delta_2) \Big) x \end{split} \end{equation}

with $\Delta_i$ is any transfer function satisfying $\| \Delta_i \|_\infty < 1$.

Suppose the model inversion is equal to the nominal model:

\begin{equation} \hat{G}_i = G_i \end{equation} \begin{equation} \hat{x} = \left( 1 + H_1 w_1 \Delta_1 + H_2 w_2 \Delta_2 \right) x \end{equation}

/tdehaeze/dehaeze20_optim_robus_compl_filte/src/commit/333f814d47dfbf1e6a6e718b8a21fb4dd80ec84f/paper/figs/sensor_fusion_arch_uncertainty.pdf

Super Sensor Dynamical Uncertainty

The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$.

/tdehaeze/dehaeze20_optim_robus_compl_filte/src/commit/333f814d47dfbf1e6a6e718b8a21fb4dd80ec84f/paper/figs/uncertainty_set_super_sensor.pdf

$\mathcal{H_\infty}$ Synthesis of Complementary Filters

Example

Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis

Experimental Validation

<<sec:experimental_validation>>

Experimental Setup

Sensor Noise and Dynamical Uncertainty

Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis

Super Sensor Noise and Dynamical Uncertainty

Conclusion

<<sec:conclusion>>

Acknowledgment

Bibliography   ignore

\bibliography{ref}