8.5 KiB
Robust and Optimal Sensor Fusion
\bibliographystyle{IEEEtran}
Abstract ignore
Abstract text to be done
Keywords ignore
Complementary Filters, Sensor Fusion, H-Infinity Synthesis
Introduction
<<sec:introduction>>
Optimal Super Sensor Noise: $\mathcal{H}_2$ Synthesis
<<sec:optimal_fusion>>
Sensor Model
Sensor Fusion Architecture
Let note $\Phi$ the PSD. $\tilde{n}_1$ and $\tilde{n}_2$ are white noise with unitary power spectral density:
\begin{equation} \Phi_{\tilde{n}_i}(\omega) = 1 \end{equation} \begin{equation} \begin{split} \hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\ &+ \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \end{split} \end{equation}Suppose the sensor dynamical model $\hat{G}_i$ is perfect:
\begin{equation} \hat{G}_i = G_i \end{equation}Complementary Filters
\begin{equation} H_1(s) + H_2(s) = 1 \end{equation} \begin{equation} \hat{x} = x + \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 \end{equation}Perfect dynamics + filter noise
Super Sensor Noise
Let's note $n$ the super sensor noise.
Its PSD is determined by:
\begin{equation} \Phi_n(\omega) = \left| H_1 N_1 \right|^2 + \left| H_2 N_2 \right|^2 \end{equation}$\mathcal{H}_2$ Synthesis of Complementary Filters
The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise sources $\tilde{n}_1$ and $\tilde{n}_2$ has the smallest possible effect on the noise $n$ of the estimation $\hat{x}$.
And the goal is the minimize the Root Mean Square (RMS) value of $n$:
\begin{equation} \sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \end{equation}Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized.
\begin{equation} \begin{pmatrix} z_1 \\ z_2 \\ v \end{pmatrix} = \begin{bmatrix} N_1 & N_1 \\ 0 & N_2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} w \\ u \end{pmatrix} \end{equation}The $\mathcal{H}_2$ synthesis of the complementary filters thus minimized the RMS value of the super sensor noise.
Example
Robustness Problem
Robust Sensor Fusion: $\mathcal{H}_\infty$ Synthesis
<<sec:robust_fusion>>
Representation of Sensor Dynamical Uncertainty
Suppose that the sensor dynamics $G_i(s)$ can be modelled by a nominal d
\begin{equation} G_i(s) = \hat{G}_i(s) \left( 1 + w_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \end{equation}Sensor Fusion Architecture
with $\Delta_i$ is any transfer function satisfying $\| \Delta_i \|_\infty < 1$.
Suppose the model inversion is equal to the nominal model:
\begin{equation} \hat{G}_i = G_i \end{equation} \begin{equation} \hat{x} = \left( 1 + H_1 w_1 \Delta_1 + H_2 w_2 \Delta_2 \right) x \end{equation}Super Sensor Dynamical Uncertainty
The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$.
$\mathcal{H_\infty}$ Synthesis of Complementary Filters
In order to minimize the super sensor dynamical uncertainty
Example
Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
<<sec:optimal_robust_fusion>>
Sensor Fusion Architecture
Synthesis Objective
Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
Example
Experimental Validation
<<sec:experimental_validation>>
Experimental Setup
Sensor Noise and Dynamical Uncertainty
Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
Super Sensor Noise and Dynamical Uncertainty
Conclusion
<<sec:conclusion>>
Acknowledgment
Bibliography ignore
\bibliography{ref}